A085835 Decimal expansion of Grossman's constant.
7, 3, 7, 3, 3, 8, 3, 0, 3, 3, 6, 9, 2, 8, 4, 9, 6, 4, 2, 0, 5, 5, 9, 5, 7, 1, 2, 4, 8, 7, 4, 3, 8, 7, 1, 7, 9, 3, 4, 5, 5, 1, 8, 5, 7, 4, 6, 5, 7, 9, 7, 8, 6, 4, 7, 6, 9, 3, 8, 9, 1, 4, 6, 6, 7, 1, 4, 1, 1, 9, 4, 9, 6, 5, 3, 2, 3, 3, 9, 3, 7, 2, 7, 5, 4, 3, 9
Offset: 0
Examples
0.737338303369284964205595712487438717934551857465797864769389146671411949653...
References
- S. R. Finch, "Grossman's Constant", Section 6.4 in Mathematical Constants, Cambridge University Press, pp. 429-430, 2003.
- Grossman, J. W. "Problem 86-2." Math. Intel. 8, 31, 1986.
- Janssen, A. J. E. M. and Tjaden, D. L. A. Solution to Problem 86-2. Math. Intel. 9, 40-43, 1987.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 0..100
- Jean-François Alcover, Grossman's sequence graphics
- Eric Weisstein's World of Mathematics, Grossman's Constant
Programs
-
Mathematica
digits = 25; precis = 100; m0 = 2*10^6; dm = 10^6; ddm = 3; Clear[var]; var[m_, x0_?NumericQ ] := var[m, x0] = Module[{a, b, n}, Clear[s]; s[0, ] = 1; s[1, x] := s[1, x] = x; s[n_, x_] := s[n, x] = SetPrecision[s[n-2, x]/(1+s[n-1, x]), precis]; Do[s[n, x0], {n, 1, m}]; fit[n_] = (model = a*n + b) /. FindFit[Table[{k, s[k, x0]}, {k, m, m + ddm}], model, {a, b}, n, WorkingPrecision -> precis]; residuals = Table[s[n, x0] - fit[n], {n, m, m + ddm}]; Variance[residuals]]; Clear[g]; g[m_ /; m < m0] = 3/4; g[m_] := g[m] = Module[{x}, Print["m = ", m]; x /. Last @ FindMinimum[var[m, x], {x, g[m - dm]}, WorkingPrecision -> precis, AccuracyGoal -> digits+1, PrecisionGoal -> digits+1, StepMonitor :> Print["Step to x = ", x]]]; g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First (* Jean-François Alcover, Apr 02 2014 *)
Extensions
Extended to 25 digits by Jean-François Alcover, Apr 02 2014
More digits from Jon E. Schoenfield, May 09 2014
Comments