cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085841 Triangle: row #n has n+1 terms. T(n,m) = 4^m (2n+1)! / ( (2n-2m)! (2m+1)! ).

Original entry on oeis.org

1, 3, 4, 5, 40, 16, 7, 140, 336, 64, 9, 336, 2016, 2304, 256, 11, 660, 7392, 21120, 14080, 1024, 13, 1144, 20592, 109824, 183040, 79872, 4096, 15, 1820, 48048, 411840, 1281280, 1397760, 430080, 16384
Offset: 0

Views

Author

Gary W. Adamson, Jul 05 2003

Keywords

Comments

Row #n has the unsigned coefficients of a polynomial whose roots are 2 cot (Pi k / (2n+1)) for k=1..2n.
Polynomial of row #n = Sum_{m=0..n} (-1)^m*T(n,m)*x^(2n-2m).

Examples

			1
3x^2 - 4
5x^4 - 40x^2 + 16
7x^6 - 140x^4 + 336x^2 - 64
9x^8 - 336x^6 + 2016x^4 - 2304x^2 + 256
11x^10 - 660x^8 + 7392x^6 - 21120x^4 + 14080x^2 - 1024
Polynomial #4 has eight roots: 2 cot (Pi k / 9) for k=1..8.
		

Crossrefs

Cf. A085840.

Programs

  • PARI
    T(n,m) = 4^m*(2*n+1)!/((2*n-2*m)!*(2*m+1)!);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 18 2018

Extensions

Edited by Don Reble, Nov 13 2005