cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085902 a(0) = 2, a(n) is the smallest squarefree number > a(n-1) such that the sum a(n) + a(i) for all i = 1 to (n-1) is squarefree. Or, sum of any two terms is a squarefree number.

Original entry on oeis.org

2, 3, 11, 19, 55, 59, 83, 111, 127, 155, 163, 199, 203, 219, 263, 299, 307, 311, 371, 383, 399, 455, 515, 803, 883, 919, 983, 1063, 1499, 1559, 1927, 2019, 2063, 2183, 2215, 2271, 2359, 2503, 2703, 2755, 2999, 3459, 3899, 3927, 4271, 4303, 4411, 4519, 4559
Offset: 0

Views

Author

Amarnath Murthy, Jul 09 2003

Keywords

Comments

It can easily be proved that a(n) == 3 (mod 4) for all n > 2.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[! SquareFreeQ[k] || AnyTrue[t, ! SquareFreeQ[k + #] &], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Aug 21 2023 *)

Extensions

More terms from Ray Chandler, Sep 13 2003