A085902 a(0) = 2, a(n) is the smallest squarefree number > a(n-1) such that the sum a(n) + a(i) for all i = 1 to (n-1) is squarefree. Or, sum of any two terms is a squarefree number.
2, 3, 11, 19, 55, 59, 83, 111, 127, 155, 163, 199, 203, 219, 263, 299, 307, 311, 371, 383, 399, 455, 515, 803, 883, 919, 983, 1063, 1499, 1559, 1927, 2019, 2063, 2183, 2215, 2271, 2359, 2503, 2703, 2755, 2999, 3459, 3899, 3927, 4271, 4303, 4411, 4519, 4559
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
a[0] = 2; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[! SquareFreeQ[k] || AnyTrue[t, ! SquareFreeQ[k + #] &], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Aug 21 2023 *)
Extensions
More terms from Ray Chandler, Sep 13 2003
Comments