A085974 Number of 0's in the decimal expansion of prime(n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
prime(26) = 101, so a(26) = 1 and prime(1230) = 10007, so a(1230) = 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a085974 = count0 0 . a000040 where count0 c x | d == 0 = if x < 10 then c + 1 else count0 (c + 1) x' | otherwise = if x < 10 then c else count0 c x' where (x', d) = divMod x 10 -- Reinhard Zumkeller, Apr 08 2014
-
Mathematica
DigitCount[Prime[Range[100]],10,0] (* Paolo Xausa, Oct 30 2023 *)