A085975 Number of 1's in decimal expansion of prime(n).
0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1
Offset: 1
Examples
prime(5) = 11, so a(5)=2 and prime(1242) = 10111, so a(1242)=4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a085975 = count1 0 . a000040 where count1 c x | d == 1 = if x < 10 then c + 1 else count1 (c + 1) x' | otherwise = if x < 10 then c else count1 c x' where (x', d) = divMod x 10 -- Reinhard Zumkeller, Apr 08 2014
-
Mathematica
DigitCount[Prime[Range[100]],10,1] (* Paolo Xausa, Oct 30 2023 *)