cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085991 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+3.

Original entry on oeis.org

1, 4, 8, 4, 3, 3, 6, 5, 6, 4, 6, 7, 0, 0, 7, 8, 2, 8, 2, 2, 5, 8, 6, 5, 0, 7, 7, 4, 9, 0, 7, 1, 1, 3, 7, 1, 8, 8, 7, 5, 5, 5, 8, 4, 1, 7, 4, 4, 8, 0, 6, 8, 8, 9, 4, 4, 2, 5, 0, 7, 5, 0, 8, 0, 5, 5, 2, 9, 8, 2, 0, 0, 3, 1, 9, 7, 6, 8, 2, 2, 9, 3, 0, 6, 4, 3, 0, 9, 8, 6, 8, 5, 0, 6, 7, 2, 4, 6, 9, 0, 9, 3, 5, 0, 7
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.14843365646700782822586507749... = 1/3^2 + 1/7^2 + 1/11^2 + 1/19^2 + 1/23^2 + ...
		

Crossrefs

Cf. A086032 (analog for primes 4k+1), A085548 (PrimeZeta(2)), A002145.
Cf. A085992 .. A085998 (Zeta_R(3..9)).

Programs

  • Mathematica
    digits = 1000; nmax0 = 500; dnmax = 10;
    Clear[PrimeZeta43];
    PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[(MoebiusMu[2n + 1] ((4n + 2) Log[2] + Log[((-1 + 2^(4n + 2)) Zeta[4n + 2])/(Zeta[4 n + 2, 1/4] - Zeta[4n + 2, 3/4])]))/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta43[2, nmax = nmax0];
    PrimeZeta43[2, nmax += dnmax];
    While[Abs[PrimeZeta43[2, nmax] - PrimeZeta43[2, nmax - dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta43[2] = PrimeZeta43[2, nmax];
    RealDigits[PrimeZeta43[2], 10, digits][[1]] (* Jean-François Alcover, Jun 21 2011, updated May 06 2021 *)
  • PARI
    PrimeZeta43(s)={suminf(n=0, my(t=s+s*n*2); moebius(n*2+1)*log(zeta(t)/(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))*(4^t-2^t))/(n*2+1))/2}
    A085991_upto(N=100)={localprec(N+3); digits((PrimeZeta43(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 25 2021

Formula

Zeta_R(2) = Sum_{primes p == 3 (mod 4)} 1/p^2
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*2))/(2*n+1),
where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.