cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

A085998 Decimal expansion of the prime zeta modulo function at 9 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 8, 3, 0, 4, 7, 2, 1, 5, 0, 1, 9, 7, 8, 8, 9, 2, 3, 5, 2, 5, 9, 1, 5, 0, 9, 2, 3, 4, 1, 1, 1, 8, 9, 6, 2, 2, 3, 8, 0, 6, 8, 9, 8, 8, 1, 6, 3, 9, 3, 9, 9, 7, 9, 5, 2, 1, 6, 0, 2, 5, 6, 1, 3, 0, 2, 8, 9, 2, 1, 4, 9, 7, 3, 7, 8, 7, 3, 7, 8, 4, 6, 1, 2, 7, 6, 5, 4, 7, 9, 2, 4, 2, 9, 1, 1, 2, 4, 8, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.000050830472150197889235259150923411189622380689881639399795... ~ 5.08...*10^-5
		

Crossrefs

Cf. A085991 .. A085997 (Zeta_R(2..8)).
Cf. A086039 (analog for primes 4k+1), A085969 (PrimeZeta(9)), A002145 (primes 4k+3).

Programs

  • Mathematica
    digits = 1003;
    nmax0 = 100;(* initial number of sum terms *)
    dnmax = 10;(* nmax increment *)
    dd = 10;(* precision excess *)
    Clear[PrimeZeta43];
    f[s_] := (1 - 2^(-s))*(Zeta[s]/DirichletBeta[s]);
    PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd] &;
    PrimeZeta43[9, nmax = nmax0];
    PrimeZeta43[9, nmax += dnmax];
    While[Abs[PrimeZeta43[9, nmax] - PrimeZeta43[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta43[9] = PrimeZeta43[9, nmax];
    Join[{0, 0, 0, 0}, RealDigits[PrimeZeta43[9], 10, digits][[1]]] (* Jean-François Alcover, Jun 22 2011, updated May 07 2021 *)
  • PARI
    A085998_upto(N=100)={localprec(N+3); digits((PrimeZeta43(9)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(9) = Sum_{primes p == 3 (mod 4)} 1/p^9
= (1/2)*Sum_{n>=0} mobius(2*n+1) *log(b((2*n+1)*9))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A343612 Decimal expansion of P_{3,2}(2) = Sum 1/p^2 over primes == 2 (mod 3).

Original entry on oeis.org

3, 0, 7, 9, 2, 0, 7, 5, 8, 6, 0, 7, 7, 3, 6, 4, 3, 6, 8, 4, 2, 5, 0, 5, 0, 7, 5, 9, 4, 0, 9, 9, 8, 7, 2, 6, 5, 8, 1, 0, 3, 2, 6, 6, 5, 4, 7, 5, 5, 1, 4, 4, 8, 0, 0, 5, 2, 0, 1, 9, 2, 5, 2, 9, 9, 3, 7, 8, 5, 5, 4, 9, 0, 1, 1, 2, 5, 6, 3, 3, 4, 3, 4, 8, 9, 0, 2, 2, 5, 9, 2, 4, 9, 3, 7, 8, 6, 8, 8, 9, 5, 1, 9, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.30792075860773643684250507594099872658103266547551448005201925299378554901...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085548 (PrimeZeta(2)), A021031 (1/27).
Cf. A175644 (same for primes 3k+1), A086032 (for primes 4k+1), A085991 (for primes 4k+3), A343613 - A343619 (P_{3,2}(s): same with 1/p^s, s = 3, ..., 9).

Programs

  • Mathematica
    digits = 105; nmax0 = 20; dnmax = 5;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta31[2, nmax = nmax0];
    PrimeZeta31[2, nmax += dnmax];
    While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
    RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
  • PARI
    s=0; forprimestep(p=2,1e8,3,s+=1./p^2);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
    A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}

Formula

P_{3,2}(2) = P(2) - 1/3^2 - P_{3,1}(2) = A085548 - A000012 - A175644.

A085992 Decimal expansion of the prime zeta modulo function at 3 for primes of the form 4k+3.

Original entry on oeis.org

0, 4, 1, 0, 0, 7, 5, 5, 6, 5, 6, 6, 4, 7, 3, 0, 3, 1, 9, 2, 8, 8, 8, 6, 5, 4, 8, 8, 5, 1, 9, 6, 0, 0, 2, 5, 9, 2, 4, 3, 0, 0, 0, 6, 0, 7, 0, 5, 7, 2, 3, 8, 1, 7, 4, 4, 8, 6, 4, 5, 6, 4, 1, 7, 1, 1, 7, 2, 2, 8, 7, 4, 4, 2, 8, 0, 7, 0, 6, 5, 7, 8, 3, 2, 1, 3, 7, 7, 3, 4, 9, 7, 4, 0, 8, 0, 0, 4, 8, 1, 3, 3, 9, 2, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.04100755656647303192888654885196002592430006070572381744864564171...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086033 (analog for primes 4k+1), A085541 (PrimeZeta(3)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x] / DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[(1/2)* NSum[MoebiusMu[2n+1]* Log[b[(2n+1)*3]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 21 2011, updated Mar 14 2018 *)
  • PARI
    A085992_upto(N=100)={localprec(N+3); digits((PrimeZeta43(3)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(3) = Sum_{primes p == 3 (mod 4)} 1/p^3
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*3))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085993 Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+3.

Original entry on oeis.org

0, 1, 2, 8, 4, 3, 5, 5, 5, 6, 1, 0, 2, 1, 7, 5, 5, 3, 3, 4, 3, 6, 2, 2, 5, 3, 4, 6, 1, 9, 5, 1, 9, 0, 1, 8, 3, 3, 4, 5, 5, 3, 1, 4, 9, 7, 7, 1, 0, 0, 8, 4, 5, 8, 1, 1, 7, 1, 2, 6, 4, 8, 3, 0, 2, 0, 4, 1, 6, 0, 7, 2, 9, 6, 9, 6, 8, 6, 4, 1, 7, 5, 7, 3, 5, 3, 1, 2, 7, 8, 6, 9, 8, 1, 7, 3, 2, 5, 3, 0, 7, 8, 0, 9, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.012843555610217553343622534619519018334553149771008458117126483020416...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086034 (analog for primes 4k+1), A085964 (PrimeZeta(4)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[ (1/2)*NSum[ MoebiusMu[2n+1]* Log[b[(2n+1)*4]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085993_upto(N=100)={localprec(N+3); digits((PrimeZeta43(4)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(4) = Sum_{primes p == 3 mod 4} 1/p^4
= (1/2)*Sum_{n >= 0} mobius(2*n+1)*log(b((2*n+1)*4))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085994 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 4, 1, 8, 1, 5, 4, 3, 4, 4, 9, 7, 0, 2, 4, 5, 9, 6, 1, 4, 3, 0, 6, 3, 3, 4, 3, 5, 2, 8, 1, 4, 6, 2, 7, 1, 5, 4, 2, 5, 4, 5, 4, 3, 0, 2, 0, 8, 5, 2, 1, 8, 4, 3, 5, 3, 3, 9, 6, 7, 4, 1, 2, 5, 1, 3, 4, 5, 5, 7, 4, 1, 5, 9, 9, 5, 0, 9, 1, 9, 5, 0, 5, 6, 7, 2, 7, 4, 9, 3, 5, 2, 6, 8, 9, 5, 7, 6, 9, 2, 2, 8, 3, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.004181543449702459614306334352814627154254543020852184353396741251345574...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086035 (analog for primes 4k+1), A085965 (PrimeZeta(5)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*5]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085994_upto(N=100)={localprec(N+3); digits((PrimeZeta43(5)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(5) = Sum_{primes r == 3 mod 4} 1/p^5
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*5))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

A085995 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 1, 3, 8, 0, 8, 3, 5, 8, 8, 6, 9, 7, 1, 7, 3, 9, 1, 6, 3, 0, 3, 1, 8, 5, 4, 1, 2, 8, 0, 1, 5, 8, 2, 2, 6, 1, 0, 6, 0, 1, 3, 9, 6, 3, 2, 7, 5, 6, 5, 4, 2, 9, 6, 8, 0, 2, 6, 4, 8, 0, 2, 5, 7, 8, 5, 3, 0, 7, 5, 2, 2, 2, 7, 0, 7, 4, 6, 9, 1, 3, 4, 7, 9, 1, 5, 6, 0, 4, 2, 5, 1, 7, 1, 0, 1, 6, 6, 0, 1, 6, 8, 7, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0013808358869717391630318541280158226106013963275654296802648025785307522...
		

Crossrefs

Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).
Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},
= (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085997 Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 1, 5, 2, 5, 9, 3, 9, 9, 4, 8, 3, 7, 4, 3, 4, 0, 9, 0, 7, 1, 5, 1, 9, 0, 7, 1, 0, 3, 7, 0, 6, 0, 6, 5, 8, 6, 5, 2, 9, 8, 8, 3, 9, 1, 0, 2, 6, 4, 4, 4, 2, 1, 3, 0, 3, 6, 5, 9, 3, 4, 0, 8, 2, 5, 5, 3, 8, 8, 9, 1, 9, 5, 8, 8, 9, 9, 5, 5, 4, 6, 7, 1, 9, 4, 2, 9, 3, 6, 5, 7, 1, 2, 6, 2, 8, 3, 1, 4, 1, 2, 7, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.000152593994837434090715190710370606586529883910264442130365934082553889...
		

Crossrefs

Cf. A086038 (analog for primes 4k+1), A085968 (PrimeZeta(8)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 320; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*8]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085997_upto(N=100)={localprec(N+3); digits((PrimeZeta43(8)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(8) = Sum_{primes p == 3 mod 4} 1/p^8
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*8))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085996 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 4, 5, 8, 5, 1, 4, 4, 0, 7, 5, 3, 3, 7, 9, 7, 2, 6, 6, 8, 7, 3, 1, 1, 2, 1, 4, 7, 2, 8, 2, 2, 1, 5, 1, 5, 3, 3, 6, 2, 7, 2, 2, 1, 3, 5, 7, 4, 4, 4, 6, 1, 4, 5, 0, 2, 7, 9, 2, 6, 4, 7, 2, 3, 9, 7, 3, 2, 9, 5, 0, 1, 1, 5, 1, 2, 7, 7, 2, 8, 9, 8, 9, 9, 2, 7, 1, 8, 0, 7, 7, 6, 4, 5, 3, 9, 2, 5, 8, 9, 3, 5, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0004585144075337972668731121472822151533627221357444614502792647239732950115...
		

Crossrefs

Cf. A086037 (analog for primes 4k+1), A085967 (PrimeZeta(7)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 275; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085996_upto(N=100)={localprec(N+3); digits((PrimeZeta43(7)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(7) = Sum_{primes p == 3 mod 4} 1/p^7
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*7))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021
Showing 1-10 of 13 results. Next