cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A085991 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+3.

Original entry on oeis.org

1, 4, 8, 4, 3, 3, 6, 5, 6, 4, 6, 7, 0, 0, 7, 8, 2, 8, 2, 2, 5, 8, 6, 5, 0, 7, 7, 4, 9, 0, 7, 1, 1, 3, 7, 1, 8, 8, 7, 5, 5, 5, 8, 4, 1, 7, 4, 4, 8, 0, 6, 8, 8, 9, 4, 4, 2, 5, 0, 7, 5, 0, 8, 0, 5, 5, 2, 9, 8, 2, 0, 0, 3, 1, 9, 7, 6, 8, 2, 2, 9, 3, 0, 6, 4, 3, 0, 9, 8, 6, 8, 5, 0, 6, 7, 2, 4, 6, 9, 0, 9, 3, 5, 0, 7
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.14843365646700782822586507749... = 1/3^2 + 1/7^2 + 1/11^2 + 1/19^2 + 1/23^2 + ...
		

Crossrefs

Cf. A086032 (analog for primes 4k+1), A085548 (PrimeZeta(2)), A002145.
Cf. A085992 .. A085998 (Zeta_R(3..9)).

Programs

  • Mathematica
    digits = 1000; nmax0 = 500; dnmax = 10;
    Clear[PrimeZeta43];
    PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[(MoebiusMu[2n + 1] ((4n + 2) Log[2] + Log[((-1 + 2^(4n + 2)) Zeta[4n + 2])/(Zeta[4 n + 2, 1/4] - Zeta[4n + 2, 3/4])]))/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta43[2, nmax = nmax0];
    PrimeZeta43[2, nmax += dnmax];
    While[Abs[PrimeZeta43[2, nmax] - PrimeZeta43[2, nmax - dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta43[2] = PrimeZeta43[2, nmax];
    RealDigits[PrimeZeta43[2], 10, digits][[1]] (* Jean-François Alcover, Jun 21 2011, updated May 06 2021 *)
  • PARI
    PrimeZeta43(s)={suminf(n=0, my(t=s+s*n*2); moebius(n*2+1)*log(zeta(t)/(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))*(4^t-2^t))/(n*2+1))/2}
    A085991_upto(N=100)={localprec(N+3); digits((PrimeZeta43(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 25 2021

Formula

Zeta_R(2) = Sum_{primes p == 3 (mod 4)} 1/p^2
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*2))/(2*n+1),
where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

A086039 Decimal expansion of the prime zeta modulo function at 9 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5, 1, 2, 1, 0, 2, 8, 1, 2, 2, 5, 2, 7, 7, 3, 8, 3, 8, 3, 2, 5, 9, 8, 9, 8, 5, 9, 7, 0, 6, 3, 4, 7, 2, 0, 0, 5, 3, 9, 6, 5, 9, 8, 5, 6, 9, 3, 9, 1, 5, 0, 4, 8, 0, 3, 7, 5, 7, 1, 4, 1, 8, 0, 6, 9, 7, 3, 3, 0, 0, 2, 2, 5, 9, 8, 4, 5, 2, 9, 6, 7, 4, 2, 5, 7, 7, 9, 2, 2, 0, 0, 1, 2, 6, 5, 9, 9, 4, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			5.121028122527738383259898597063472005396598569391504803757141806973300...* 10^-7
		

Crossrefs

Cf. A085998 (same for primes 4k+3), A343629 (for primes 3k+1), A343619 (for primes 3k+2), A086032 - A086038 (for 1/p^2, ..., 1/p^8), A085969 (PrimeZeta(9)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1004;
    nmax0 = 50; (* initial number of sum terms *)
    dnmax = 10; (* nmax increment *)
    dd = 10; (* precision excess *)
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2 s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd]&;
    PrimeZeta41[9, nmax = nmax0];
    PrimeZeta41[9, nmax += dnmax];
    While[Abs[PrimeZeta41[9, nmax] - PrimeZeta41[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[9] = PrimeZeta41[9, nmax];
    Join[{0, 0, 0, 0, 0, 0}, RealDigits[PrimeZeta41[9], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 07 2021 *)
  • PARI
    A086039_upto(N=100)={localprec(N+3); digits((PrimeZeta41(9)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(9) = Sum_{p in A002144} 1/p^9, where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(9m)*zeta(9m)/zeta(18m)/(1 + 2^(-9m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A343619 Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0019536374331587137208046015123929176069335003912220646291626134042468494...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).

Programs

  • Mathematica
    digits = 1004; nmax0 = 50; dnmax = 10;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
    PrimeZeta31[9, nmax = nmax0];
    PrimeZeta31[9, nmax += dnmax];
    While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
    Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
  • PARI
    A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).

A085992 Decimal expansion of the prime zeta modulo function at 3 for primes of the form 4k+3.

Original entry on oeis.org

0, 4, 1, 0, 0, 7, 5, 5, 6, 5, 6, 6, 4, 7, 3, 0, 3, 1, 9, 2, 8, 8, 8, 6, 5, 4, 8, 8, 5, 1, 9, 6, 0, 0, 2, 5, 9, 2, 4, 3, 0, 0, 0, 6, 0, 7, 0, 5, 7, 2, 3, 8, 1, 7, 4, 4, 8, 6, 4, 5, 6, 4, 1, 7, 1, 1, 7, 2, 2, 8, 7, 4, 4, 2, 8, 0, 7, 0, 6, 5, 7, 8, 3, 2, 1, 3, 7, 7, 3, 4, 9, 7, 4, 0, 8, 0, 0, 4, 8, 1, 3, 3, 9, 2, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.04100755656647303192888654885196002592430006070572381744864564171...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086033 (analog for primes 4k+1), A085541 (PrimeZeta(3)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x] / DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[(1/2)* NSum[MoebiusMu[2n+1]* Log[b[(2n+1)*3]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 21 2011, updated Mar 14 2018 *)
  • PARI
    A085992_upto(N=100)={localprec(N+3); digits((PrimeZeta43(3)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(3) = Sum_{primes p == 3 (mod 4)} 1/p^3
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*3))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085993 Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+3.

Original entry on oeis.org

0, 1, 2, 8, 4, 3, 5, 5, 5, 6, 1, 0, 2, 1, 7, 5, 5, 3, 3, 4, 3, 6, 2, 2, 5, 3, 4, 6, 1, 9, 5, 1, 9, 0, 1, 8, 3, 3, 4, 5, 5, 3, 1, 4, 9, 7, 7, 1, 0, 0, 8, 4, 5, 8, 1, 1, 7, 1, 2, 6, 4, 8, 3, 0, 2, 0, 4, 1, 6, 0, 7, 2, 9, 6, 9, 6, 8, 6, 4, 1, 7, 5, 7, 3, 5, 3, 1, 2, 7, 8, 6, 9, 8, 1, 7, 3, 2, 5, 3, 0, 7, 8, 0, 9, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.012843555610217553343622534619519018334553149771008458117126483020416...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086034 (analog for primes 4k+1), A085964 (PrimeZeta(4)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[ (1/2)*NSum[ MoebiusMu[2n+1]* Log[b[(2n+1)*4]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085993_upto(N=100)={localprec(N+3); digits((PrimeZeta43(4)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(4) = Sum_{primes p == 3 mod 4} 1/p^4
= (1/2)*Sum_{n >= 0} mobius(2*n+1)*log(b((2*n+1)*4))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085994 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 4, 1, 8, 1, 5, 4, 3, 4, 4, 9, 7, 0, 2, 4, 5, 9, 6, 1, 4, 3, 0, 6, 3, 3, 4, 3, 5, 2, 8, 1, 4, 6, 2, 7, 1, 5, 4, 2, 5, 4, 5, 4, 3, 0, 2, 0, 8, 5, 2, 1, 8, 4, 3, 5, 3, 3, 9, 6, 7, 4, 1, 2, 5, 1, 3, 4, 5, 5, 7, 4, 1, 5, 9, 9, 5, 0, 9, 1, 9, 5, 0, 5, 6, 7, 2, 7, 4, 9, 3, 5, 2, 6, 8, 9, 5, 7, 6, 9, 2, 2, 8, 3, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.004181543449702459614306334352814627154254543020852184353396741251345574...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086035 (analog for primes 4k+1), A085965 (PrimeZeta(5)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*5]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085994_upto(N=100)={localprec(N+3); digits((PrimeZeta43(5)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(5) = Sum_{primes r == 3 mod 4} 1/p^5
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*5))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

A085995 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 1, 3, 8, 0, 8, 3, 5, 8, 8, 6, 9, 7, 1, 7, 3, 9, 1, 6, 3, 0, 3, 1, 8, 5, 4, 1, 2, 8, 0, 1, 5, 8, 2, 2, 6, 1, 0, 6, 0, 1, 3, 9, 6, 3, 2, 7, 5, 6, 5, 4, 2, 9, 6, 8, 0, 2, 6, 4, 8, 0, 2, 5, 7, 8, 5, 3, 0, 7, 5, 2, 2, 2, 7, 0, 7, 4, 6, 9, 1, 3, 4, 7, 9, 1, 5, 6, 0, 4, 2, 5, 1, 7, 1, 0, 1, 6, 6, 0, 1, 6, 8, 7, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0013808358869717391630318541280158226106013963275654296802648025785307522...
		

Crossrefs

Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).
Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},
= (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085997 Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 1, 5, 2, 5, 9, 3, 9, 9, 4, 8, 3, 7, 4, 3, 4, 0, 9, 0, 7, 1, 5, 1, 9, 0, 7, 1, 0, 3, 7, 0, 6, 0, 6, 5, 8, 6, 5, 2, 9, 8, 8, 3, 9, 1, 0, 2, 6, 4, 4, 4, 2, 1, 3, 0, 3, 6, 5, 9, 3, 4, 0, 8, 2, 5, 5, 3, 8, 8, 9, 1, 9, 5, 8, 8, 9, 9, 5, 5, 4, 6, 7, 1, 9, 4, 2, 9, 3, 6, 5, 7, 1, 2, 6, 2, 8, 3, 1, 4, 1, 2, 7, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.000152593994837434090715190710370606586529883910264442130365934082553889...
		

Crossrefs

Cf. A086038 (analog for primes 4k+1), A085968 (PrimeZeta(8)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 320; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*8]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085997_upto(N=100)={localprec(N+3); digits((PrimeZeta43(8)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(8) = Sum_{primes p == 3 mod 4} 1/p^8
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*8))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A085996 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 4, 5, 8, 5, 1, 4, 4, 0, 7, 5, 3, 3, 7, 9, 7, 2, 6, 6, 8, 7, 3, 1, 1, 2, 1, 4, 7, 2, 8, 2, 2, 1, 5, 1, 5, 3, 3, 6, 2, 7, 2, 2, 1, 3, 5, 7, 4, 4, 4, 6, 1, 4, 5, 0, 2, 7, 9, 2, 6, 4, 7, 2, 3, 9, 7, 3, 2, 9, 5, 0, 1, 1, 5, 1, 2, 7, 7, 2, 8, 9, 8, 9, 9, 2, 7, 1, 8, 0, 7, 7, 6, 4, 5, 3, 9, 2, 5, 8, 9, 3, 5, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0004585144075337972668731121472822151533627221357444614502792647239732950115...
		

Crossrefs

Cf. A086037 (analog for primes 4k+1), A085967 (PrimeZeta(7)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 275; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085996_upto(N=100)={localprec(N+3); digits((PrimeZeta43(7)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(7) = Sum_{primes p == 3 mod 4} 1/p^7
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*7))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021
Showing 1-9 of 9 results.