cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

A085998 Decimal expansion of the prime zeta modulo function at 9 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 8, 3, 0, 4, 7, 2, 1, 5, 0, 1, 9, 7, 8, 8, 9, 2, 3, 5, 2, 5, 9, 1, 5, 0, 9, 2, 3, 4, 1, 1, 1, 8, 9, 6, 2, 2, 3, 8, 0, 6, 8, 9, 8, 8, 1, 6, 3, 9, 3, 9, 9, 7, 9, 5, 2, 1, 6, 0, 2, 5, 6, 1, 3, 0, 2, 8, 9, 2, 1, 4, 9, 7, 3, 7, 8, 7, 3, 7, 8, 4, 6, 1, 2, 7, 6, 5, 4, 7, 9, 2, 4, 2, 9, 1, 1, 2, 4, 8, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.000050830472150197889235259150923411189622380689881639399795... ~ 5.08...*10^-5
		

Crossrefs

Cf. A085991 .. A085997 (Zeta_R(2..8)).
Cf. A086039 (analog for primes 4k+1), A085969 (PrimeZeta(9)), A002145 (primes 4k+3).

Programs

  • Mathematica
    digits = 1003;
    nmax0 = 100;(* initial number of sum terms *)
    dnmax = 10;(* nmax increment *)
    dd = 10;(* precision excess *)
    Clear[PrimeZeta43];
    f[s_] := (1 - 2^(-s))*(Zeta[s]/DirichletBeta[s]);
    PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd] &;
    PrimeZeta43[9, nmax = nmax0];
    PrimeZeta43[9, nmax += dnmax];
    While[Abs[PrimeZeta43[9, nmax] - PrimeZeta43[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta43[9] = PrimeZeta43[9, nmax];
    Join[{0, 0, 0, 0}, RealDigits[PrimeZeta43[9], 10, digits][[1]]] (* Jean-François Alcover, Jun 22 2011, updated May 07 2021 *)
  • PARI
    A085998_upto(N=100)={localprec(N+3); digits((PrimeZeta43(9)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(9) = Sum_{primes p == 3 (mod 4)} 1/p^9
= (1/2)*Sum_{n>=0} mobius(2*n+1) *log(b((2*n+1)*9))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A343619 Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0019536374331587137208046015123929176069335003912220646291626134042468494...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).

Programs

  • Mathematica
    digits = 1004; nmax0 = 50; dnmax = 10;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
    PrimeZeta31[9, nmax = nmax0];
    PrimeZeta31[9, nmax += dnmax];
    While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
    Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
  • PARI
    A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).

A343629 Decimal expansion of the Prime Zeta modulo function P_{3,1}(9) = Sum 1/p^9 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 4, 8, 7, 8, 3, 7, 8, 4, 4, 6, 0, 8, 2, 1, 3, 5, 8, 7, 3, 8, 3, 8, 2, 1, 5, 9, 3, 7, 8, 7, 6, 3, 4, 0, 6, 7, 2, 3, 0, 8, 2, 5, 9, 9, 4, 7, 3, 4, 0, 8, 1, 5, 2, 5, 9, 4, 9, 1, 8, 7, 4, 6, 7, 2, 3, 8, 2, 1, 9, 0, 9, 2, 0, 8, 9, 0, 0, 5, 0, 1, 9, 8, 4, 2, 1, 9, 4, 7, 7, 0, 1, 4
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 9 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^9 = 1/7^9 + 1/13^9 + 1/19^9 + 1/31^9 + ...
The complementary Sum_{primes in A003627} 1/p^8 is given by P_{3,2}(8) = A085969 - 1/3^9 - (this value here) = 0.0039088148233885949714061... = A343609.

Examples

			P_{3,1}(9) = 2.4878378446082135873838215937876340672308259947340815...*10^-8
		

Crossrefs

Cf. A086039 (P_{4,1}(9): same for p==1 (mod 4)), A175645, A343624 - A343628 (P_{3,1}(3..8): same for 1/p^n, n = 3..8), A343609 (P_{3,2}(9): same for p==2 (mod 3)).
Cf. A085969 (PrimeZeta(9)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=9}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^9); s \\ For illustration: primes up to 10^N give ~ 8N+2 (= 66 for N=8) correct digits.
    
  • PARI
    A343629_upto(N=100)={localprec(N+5);digits((PrimeZeta31(9)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A086033 Decimal expansion of the prime zeta modulo function at 3 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 8, 7, 5, 5, 0, 8, 2, 7, 3, 2, 9, 7, 0, 5, 0, 4, 4, 9, 4, 2, 2, 6, 7, 6, 5, 8, 1, 3, 7, 4, 6, 6, 7, 5, 0, 5, 1, 1, 1, 2, 0, 6, 1, 2, 2, 0, 4, 2, 5, 4, 7, 2, 4, 4, 0, 0, 2, 6, 3, 7, 4, 9, 8, 9, 9, 0, 8, 7, 1, 5, 1, 0, 0, 0, 5, 8, 9, 2, 9, 8, 0, 3, 4, 9, 6, 4, 6, 5, 5, 6, 2, 8, 9, 2, 5, 1, 2, 4, 1, 2, 8, 6, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.008755082732970504494226765813746675051112061220425472440026374989908715100...
		

Crossrefs

Cf. A085992 (same for primes 4k+3), A175645 (for primes 3k+1), A343613 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 110; $MaxExtraPrecision = 470; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*3]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086033_upto(N=100)={localprec(N+3);digits((PrimeZeta41(3)+1)\.1^N)[^1]} \\ See A086032 for the function PrimeZeta41. - M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(3) = Sum_{p in A002144} 1/p^3 where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(3m)*zeta(3m)/zeta(6m)/(1+8^-m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
Equals A085541 - 1/2^3 - A085992. - R. J. Mathar, Apr 03 2011

A086035 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 3, 2, 3, 4, 7, 4, 0, 3, 4, 2, 2, 1, 7, 9, 7, 5, 1, 8, 5, 1, 1, 9, 0, 8, 1, 8, 6, 0, 4, 1, 0, 8, 3, 9, 7, 7, 4, 4, 2, 7, 3, 3, 7, 0, 5, 7, 9, 9, 1, 4, 7, 3, 3, 6, 6, 9, 5, 9, 3, 3, 5, 7, 2, 6, 3, 0, 2, 6, 0, 1, 1, 4, 7, 7, 7, 0, 1, 1, 8, 6, 0, 4, 0, 0, 0, 5, 7, 1, 1, 7, 6, 8, 7, 2, 1, 8, 1, 6, 6, 8, 0, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0003234740342217975185119081860410839774427337057991473366959335726302601...
		

Crossrefs

Cf. A085994 (same for primes 4k+3), A343625 (for primes 3k+1), A343615 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085965 (PrimeZeta(5)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1004; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[5(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m-dm]] < 10^(-digits-dd), Print[m]; m += dm];
    Join[{0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086035_upto(N=100)={localprec(N+3); digits((PrimeZeta41(5)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(5) = Sum_{p in A002144} 1/p^5 where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m *log(DirichletBeta(5m)*zeta(5m)/zeta(10m)/(1+2^(-5m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086036 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 6, 4, 2, 5, 0, 9, 6, 3, 6, 6, 4, 7, 7, 3, 7, 9, 1, 1, 0, 1, 8, 1, 9, 1, 3, 8, 0, 4, 3, 5, 7, 6, 5, 9, 8, 9, 8, 4, 5, 4, 5, 5, 4, 6, 9, 7, 8, 8, 1, 5, 0, 5, 2, 8, 9, 8, 5, 6, 6, 2, 5, 8, 4, 3, 8, 9, 8, 4, 5, 2, 0, 0, 9, 7, 7, 4, 5, 3, 2, 3, 9, 4, 4, 7, 4, 5, 8, 2, 6, 4, 7, 0, 4, 5, 7, 0, 1, 1, 9, 4, 4
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			6.4250963664773791101819138043576598984545546978815052898566258438984520...*10^-5
		

Crossrefs

Cf. A085995 (same for primes 4k+3), A343626 (for primes 3k+1), A343616 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085966 (PrimeZeta(6)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1003; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1 + 2^-s)^-1 DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits + dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1]*Log[b[(2n + 1)*6]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086036_upto(N=100)={localprec(N+3); digits((PrimeZeta41(6)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(6) = Sum_{p in A002144} 1/p^6 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(6m)*zeta(6m)/zeta(12m)/(1+2^(-6m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086038 Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 5, 6, 1, 3, 7, 1, 6, 8, 0, 3, 9, 6, 4, 6, 9, 8, 0, 8, 2, 4, 8, 4, 3, 2, 3, 1, 2, 4, 7, 3, 9, 3, 6, 4, 4, 7, 2, 6, 0, 6, 0, 1, 8, 0, 7, 2, 9, 8, 8, 7, 0, 6, 6, 6, 7, 5, 4, 5, 9, 9, 1, 7, 4, 7, 4, 1, 2, 1, 1, 1, 8, 8, 8, 4, 8, 9, 3, 8, 8, 9, 7, 9, 8, 9, 1, 4, 8, 1, 7, 8, 0, 3, 0, 3, 0, 1, 3, 7, 6
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			2.56137168039646980824843231247393644726060180729887066675459917474121... * 10^-6
		

Crossrefs

Cf. A085997 (same for primes 4k+3), A343628 (for primes 3k+1), A343618 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085968 (PrimeZeta(8)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1000; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[8(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}] ; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086038_upto(N=100)={localprec(N+3); digits((PrimeZeta41(8)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(8) = Sum_{p in A002144} 1/p^8, where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(8m)*zeta(8m)/zeta(16m)/(1+2^(-8m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086034 Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 1, 6, 4, 9, 5, 8, 4, 1, 5, 4, 0, 2, 9, 2, 9, 1, 5, 9, 8, 9, 9, 6, 7, 6, 1, 3, 1, 3, 6, 3, 8, 8, 5, 1, 8, 2, 7, 4, 8, 7, 9, 0, 9, 9, 4, 3, 8, 3, 4, 7, 3, 2, 1, 4, 7, 8, 1, 1, 5, 2, 5, 8, 3, 8, 8, 0, 0, 4, 9, 7, 5, 1, 7, 8, 7, 7, 7, 8, 8, 9, 3, 6, 8, 0, 1, 8, 2, 8, 0, 8, 7, 2, 2, 3, 0, 3, 6, 4, 6, 3, 9, 2, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0016495841540292915989967613136388518274879099438347321478115258388...
		

Crossrefs

Cf. A085993 (same for primes 4k+3), A343624 (for primes 3k+1), A343614 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 680; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*4]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086034_upto(N=100)={localprec(N+3); digits((PrimeZeta41(4)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(4) = Sum_{p in A002144} 1/p^4 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(4m)*zeta(4m)/zeta(8m)/(1+2^(-4m)))[using Gourdon & Sebah, Theorem 11] - M. F. Hasler, Apr 26 2021.

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086037 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 1, 8, 4, 4, 8, 5, 9, 9, 7, 9, 5, 2, 6, 8, 2, 5, 1, 0, 2, 6, 5, 8, 2, 1, 6, 6, 5, 0, 7, 9, 3, 5, 8, 2, 0, 6, 0, 6, 7, 4, 9, 5, 6, 3, 3, 4, 4, 7, 9, 4, 3, 6, 2, 6, 5, 6, 9, 1, 4, 6, 8, 2, 1, 9, 4, 3, 9, 9, 4, 9, 5, 0, 8, 5, 2, 8, 5, 3, 2, 3, 8, 9, 5, 3, 4, 0, 5, 4, 6, 4, 2, 7, 4, 5, 3, 9, 2, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			1.2818448599795268251026582166507935820606749563344794362656914682... * 10^-5
		

Crossrefs

Cf. A085996 (same for primes 4k+3), A343627 (for primes 3k+1), A343617 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085967 (PrimeZeta(7)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 1200; Join[{0, 0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086037_upto(N=100)={localprec(N+3); digits((PrimeZeta41(7)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(7) = Sum_{p in A002144} 1/p^7 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m*log(DirichletBeta(7m)*zeta(7m)/zeta(14m)/(1+2^(-7m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021
Showing 1-10 of 10 results.