cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085996 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 0, 4, 5, 8, 5, 1, 4, 4, 0, 7, 5, 3, 3, 7, 9, 7, 2, 6, 6, 8, 7, 3, 1, 1, 2, 1, 4, 7, 2, 8, 2, 2, 1, 5, 1, 5, 3, 3, 6, 2, 7, 2, 2, 1, 3, 5, 7, 4, 4, 4, 6, 1, 4, 5, 0, 2, 7, 9, 2, 6, 4, 7, 2, 3, 9, 7, 3, 2, 9, 5, 0, 1, 1, 5, 1, 2, 7, 7, 2, 8, 9, 8, 9, 9, 2, 7, 1, 8, 0, 7, 7, 6, 4, 5, 3, 9, 2, 5, 8, 9, 3, 5, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.0004585144075337972668731121472822151533627221357444614502792647239732950115...
		

Crossrefs

Cf. A086037 (analog for primes 4k+1), A085967 (PrimeZeta(7)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 275; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085996_upto(N=100)={localprec(N+3); digits((PrimeZeta43(7)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(7) = Sum_{primes p == 3 mod 4} 1/p^7
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*7))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A343627 Decimal expansion of the Prime Zeta modulo function P_{3,1}(7) = Sum 1/p^7 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 1, 3, 7, 2, 2, 5, 5, 4, 8, 1, 9, 1, 9, 6, 7, 4, 4, 4, 8, 9, 4, 7, 1, 2, 4, 4, 4, 4, 0, 0, 3, 9, 3, 6, 6, 6, 9, 0, 5, 7, 8, 6, 6, 2, 6, 3, 7, 0, 7, 2, 8, 1, 9, 6, 3, 7, 0, 6, 2, 0, 2, 1, 0, 5, 7, 4, 1, 2, 0, 6, 7, 2, 6, 0, 0, 6, 9, 5, 5, 9, 2, 2, 1, 2, 7, 4, 9, 2, 4, 8, 2, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 7 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^7 = 1/7^7 + 1/13^7 + 1/19^7 + 1/31^7 + ...
The complementary Sum_{primes in A003627} 1/p^7 is given by P_{3,2}(7) = A085967 - 1/3^7 - (this value here) = 0.0078253541130504928742517... = A343607.

Examples

			P_{3,1}(7) = 1.231372255481919674448947124444003936669057866...*10^-6
		

Crossrefs

Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n = 3..9), A343607 (P_{3,2}(7): same for p==2 (mod 3)), A086037 (P_{4,1}(7): same for p==1 (mod 4)).
Cf. A085967 (PrimeZeta(7)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=7}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^7); s \\ For illustration: primes up to 10^N give 6N+2 (= 50 for N=8) correct digits.
    
  • PARI
    A343627_upto(N=100)={localprec(N+5);digits((PrimeZeta31(7)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343617 Decimal expansion of P_{3,2}(7) = Sum 1/p^7 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 7, 8, 2, 5, 3, 5, 4, 1, 1, 3, 0, 5, 0, 4, 9, 2, 8, 7, 4, 2, 5, 1, 7, 0, 1, 6, 7, 0, 7, 5, 5, 9, 2, 0, 6, 0, 3, 3, 0, 7, 9, 3, 0, 9, 7, 5, 1, 3, 2, 4, 4, 3, 3, 1, 4, 6, 8, 0, 4, 8, 8, 3, 3, 9, 4, 0, 3, 5, 4, 3, 7, 0, 6, 3, 8, 0, 9, 2, 1, 8, 4, 3, 5, 7, 0, 1, 1, 0, 5, 8, 6, 5, 3, 8, 3, 8, 6, 4, 5, 6, 2, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0078253541130504928742517016707559206033079309751324433146804883394...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001015 (n^7), A085967 (PrimeZeta(7)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343627 (for primes 3k+1), A086037 (for primes 4k+1), A085996 (for primes 4k+3).

Programs

  • PARI
    A343617_upto(N=100)={localprec(N+5); digits((PrimeZeta32(7)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(7) = Sum_{p in A003627} 1/p^7 = P(7) - 1/3^7 - P_{3,1}(7).
Showing 1-3 of 3 results.