cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086037 Decimal expansion of the prime zeta modulo function at 7 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 1, 8, 4, 4, 8, 5, 9, 9, 7, 9, 5, 2, 6, 8, 2, 5, 1, 0, 2, 6, 5, 8, 2, 1, 6, 6, 5, 0, 7, 9, 3, 5, 8, 2, 0, 6, 0, 6, 7, 4, 9, 5, 6, 3, 3, 4, 4, 7, 9, 4, 3, 6, 2, 6, 5, 6, 9, 1, 4, 6, 8, 2, 1, 9, 4, 3, 9, 9, 4, 9, 5, 0, 8, 5, 2, 8, 5, 3, 2, 3, 8, 9, 5, 3, 4, 0, 5, 4, 6, 4, 2, 7, 4, 5, 3, 9, 2, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			1.2818448599795268251026582166507935820606749563344794362656914682... * 10^-5
		

Crossrefs

Cf. A085996 (same for primes 4k+3), A343627 (for primes 3k+1), A343617 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085967 (PrimeZeta(7)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 1200; Join[{0, 0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*7]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086037_upto(N=100)={localprec(N+3); digits((PrimeZeta41(7)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(7) = Sum_{p in A002144} 1/p^7 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m*log(DirichletBeta(7m)*zeta(7m)/zeta(14m)/(1+2^(-7m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A343617 Decimal expansion of P_{3,2}(7) = Sum 1/p^7 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 7, 8, 2, 5, 3, 5, 4, 1, 1, 3, 0, 5, 0, 4, 9, 2, 8, 7, 4, 2, 5, 1, 7, 0, 1, 6, 7, 0, 7, 5, 5, 9, 2, 0, 6, 0, 3, 3, 0, 7, 9, 3, 0, 9, 7, 5, 1, 3, 2, 4, 4, 3, 3, 1, 4, 6, 8, 0, 4, 8, 8, 3, 3, 9, 4, 0, 3, 5, 4, 3, 7, 0, 6, 3, 8, 0, 9, 2, 1, 8, 4, 3, 5, 7, 0, 1, 1, 0, 5, 8, 6, 5, 3, 8, 3, 8, 6, 4, 5, 6, 2, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0078253541130504928742517016707559206033079309751324433146804883394...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001015 (n^7), A085967 (PrimeZeta(7)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343627 (for primes 3k+1), A086037 (for primes 4k+1), A085996 (for primes 4k+3).

Programs

  • PARI
    A343617_upto(N=100)={localprec(N+5); digits((PrimeZeta32(7)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(7) = Sum_{p in A003627} 1/p^7 = P(7) - 1/3^7 - P_{3,1}(7).
Showing 1-2 of 2 results.