cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085965 Decimal expansion of the prime zeta function at 5.

Original entry on oeis.org

0, 3, 5, 7, 5, 5, 0, 1, 7, 4, 8, 3, 9, 2, 4, 2, 5, 7, 1, 3, 2, 8, 1, 8, 2, 4, 2, 5, 3, 8, 8, 5, 5, 7, 1, 1, 1, 3, 1, 6, 9, 7, 2, 7, 6, 7, 2, 6, 6, 5, 1, 3, 3, 1, 6, 9, 0, 0, 9, 2, 6, 7, 4, 8, 2, 3, 9, 7, 5, 8, 3, 4, 2, 7, 4, 7, 2, 7, 9, 3, 1, 3, 6, 6, 0, 7, 2, 8, 0, 6, 4, 7, 0, 3, 7, 6, 7, 9, 5, 0, 8, 9, 6, 3, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.0357550174839242571328...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4), this sequence (at 5), A085966 (at 6) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0] cat Reverse(IntegerToSequence(Floor(PrimeZeta(5,69)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[5*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n=200]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 14 2013, from 1st formula *)
    RealDigits[ PrimeZetaP[ 5], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,5) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(5) = Sum_{p prime} 1/p^5 = Sum_{n>=1} mobius(n)*log(zeta(5*n))/n.
Equals 1/2^5 + A085994 + A086035. - R. J. Mathar, Jul 14 2012
Equals Sum_{k>=1} 1/A050997(k). - Amiram Eldar, Jul 27 2020

A085994 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+3.

Original entry on oeis.org

0, 0, 4, 1, 8, 1, 5, 4, 3, 4, 4, 9, 7, 0, 2, 4, 5, 9, 6, 1, 4, 3, 0, 6, 3, 3, 4, 3, 5, 2, 8, 1, 4, 6, 2, 7, 1, 5, 4, 2, 5, 4, 5, 4, 3, 0, 2, 0, 8, 5, 2, 1, 8, 4, 3, 5, 3, 3, 9, 6, 7, 4, 1, 2, 5, 1, 3, 4, 5, 5, 7, 4, 1, 5, 9, 9, 5, 0, 9, 1, 9, 5, 0, 5, 6, 7, 2, 7, 4, 9, 3, 5, 2, 6, 8, 9, 5, 7, 6, 9, 2, 2, 8, 3, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.004181543449702459614306334352814627154254543020852184353396741251345574...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086035 (analog for primes 4k+1), A085965 (PrimeZeta(5)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*5]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
  • PARI
    A085994_upto(N=100)={localprec(N+3); digits((PrimeZeta43(5)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(5) = Sum_{primes r == 3 mod 4} 1/p^5
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*5))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

A343625 Decimal expansion of the Prime Zeta modulo function P_{3,1}(5) = Sum 1/p^5 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 6, 2, 6, 5, 5, 4, 2, 7, 4, 7, 1, 7, 5, 5, 5, 0, 6, 0, 0, 2, 5, 6, 9, 1, 9, 1, 0, 2, 4, 0, 8, 8, 4, 4, 6, 4, 7, 5, 7, 2, 0, 6, 7, 2, 6, 2, 0, 8, 2, 4, 1, 0, 6, 9, 5, 1, 6, 1, 4, 3, 6, 3, 6, 9, 7, 5, 1, 8, 8, 8, 4, 1, 3, 4, 3, 0, 7, 9, 7, 0, 3, 6, 1, 4, 6, 9, 3, 7, 9, 9, 5, 1, 9, 7, 3, 3
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 5 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^5 = 1/7^5 + 1/13^5 + 1/19^5 + 1/31^5 + ...
The complementary Sum_{primes in A003627} 1/p^5 is given by P_{3,2}(5) = A085965 - 1/3^5 - (this value here) = 0.03157713571900394195603378... = A343615.

Examples

			P_{3,1}(5) = 6.2655427471755506002569191024088446475720672620824106951614...*10^-5
		

Crossrefs

Cf. A086035 (P_{4,1}(5): same for p==1 (mod 4)), A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3..9), A343615 (P_{3,2}(5): same for p==2 (mod 3)).
Cf. A085965 (PrimeZeta(5)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=5}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^5); s \\ Naïve, for illustration: primes up to 10^N give 4N+2 (= 34 for N=8) correct digits.
    
  • PARI
    A343607_upto(N=100)={localprec(N+5);digits((PrimeZeta31(5)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343615 Decimal expansion of P_{3,2}(5) = Sum 1/p^5 over primes == 2 (mod 3).

Original entry on oeis.org

0, 3, 1, 5, 7, 7, 1, 3, 5, 7, 1, 9, 0, 0, 3, 9, 4, 1, 9, 5, 6, 0, 3, 3, 7, 8, 0, 3, 4, 3, 7, 1, 6, 3, 9, 6, 3, 4, 7, 7, 7, 2, 9, 9, 6, 3, 8, 3, 2, 4, 8, 6, 1, 4, 5, 7, 9, 0, 2, 5, 8, 3, 4, 1, 2, 2, 8, 2, 9, 7, 5, 5, 7, 1, 9, 8, 1, 1, 7, 3, 0, 3, 9, 1, 5, 9, 6, 1, 1, 0, 7, 5, 2, 9, 7, 6, 2, 6, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0315771357190039419560337803437163963477729963832486145790258341228297557...
		

Crossrefs

Cf. A003627 (primes 3k-1), A000584 (n^5), A085965 (PrimeZeta(5)), A021247 (1/3^5).
Cf. A343625 (same for primes 3k+1), A086035 (for primes 4k+1), A085994 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343615_upto(N=100, s=5)={localprec(N+5); digits((sumeulerrat(1/p^s)-1/3^s-PrimeZeta31(s)+1)\.1^N)[^1]} \\ see A175644 for the function PrimeZeta31, A343612 for a function PrimeZeta32

Formula

P_{3,2}(5) = P(5) - 1/3^5 - P_{3,1}(5).
Showing 1-4 of 4 results.