cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343624 Decimal expansion of the Prime Zeta modulo function P_{3,1}(4) = Sum 1/p^4 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 4, 6, 1, 3, 1, 5, 0, 5, 5, 3, 4, 3, 3, 8, 6, 9, 4, 0, 1, 7, 4, 5, 3, 0, 3, 3, 3, 4, 0, 9, 4, 5, 4, 3, 3, 9, 9, 3, 9, 0, 1, 8, 3, 5, 3, 8, 1, 6, 8, 7, 0, 3, 6, 7, 9, 6, 6, 8, 3, 7, 5, 9, 6, 2, 4, 8, 9, 7, 8, 8, 5, 3, 2, 7, 9, 5, 2, 8, 8, 5, 0, 0, 2, 1, 9, 0, 0, 8, 5, 6, 6, 6, 8, 3, 6, 9, 7
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 4 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^4 = 1/7^4 + 1/13^4 + 1/19^4 + 1/31^4 + ...
The complementary Sum_{primes in A003627} 1/p^4 is given by P_{3,2}(4) = A085964 - 1/3^4 - (this value here) = 0.064186145696557778990099... = A343614.

Examples

			P_{3,1}(4) = 0.000461315055343386940174530333409454339939018353816870...
		

Crossrefs

Cf. A175645, A343625 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3, 5,..., 9).
Cf. A343614 (P_{3,2}(4): same for p==2 (mod 3)), A086034 (P_{4,1}(4): same for p==1 (mod 4)), A085964 (PrimeZeta(4)).

Programs

  • Mathematica
    With[{s=4}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^4); s \\ Naïve, for illustration: primes up to 10^N give about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343606_upto(N=100)={localprec(N+5);digits((PrimeZeta31(4)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A086035 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 3, 2, 3, 4, 7, 4, 0, 3, 4, 2, 2, 1, 7, 9, 7, 5, 1, 8, 5, 1, 1, 9, 0, 8, 1, 8, 6, 0, 4, 1, 0, 8, 3, 9, 7, 7, 4, 4, 2, 7, 3, 3, 7, 0, 5, 7, 9, 9, 1, 4, 7, 3, 3, 6, 6, 9, 5, 9, 3, 3, 5, 7, 2, 6, 3, 0, 2, 6, 0, 1, 1, 4, 7, 7, 7, 0, 1, 1, 8, 6, 0, 4, 0, 0, 0, 5, 7, 1, 1, 7, 6, 8, 7, 2, 1, 8, 1, 6, 6, 8, 0, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0003234740342217975185119081860410839774427337057991473366959335726302601...
		

Crossrefs

Cf. A085994 (same for primes 4k+3), A343625 (for primes 3k+1), A343615 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085965 (PrimeZeta(5)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1004; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[5(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m-dm]] < 10^(-digits-dd), Print[m]; m += dm];
    Join[{0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086035_upto(N=100)={localprec(N+3); digits((PrimeZeta41(5)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(5) = Sum_{p in A002144} 1/p^5 where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m *log(DirichletBeta(5m)*zeta(5m)/zeta(10m)/(1+2^(-5m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A343615 Decimal expansion of P_{3,2}(5) = Sum 1/p^5 over primes == 2 (mod 3).

Original entry on oeis.org

0, 3, 1, 5, 7, 7, 1, 3, 5, 7, 1, 9, 0, 0, 3, 9, 4, 1, 9, 5, 6, 0, 3, 3, 7, 8, 0, 3, 4, 3, 7, 1, 6, 3, 9, 6, 3, 4, 7, 7, 7, 2, 9, 9, 6, 3, 8, 3, 2, 4, 8, 6, 1, 4, 5, 7, 9, 0, 2, 5, 8, 3, 4, 1, 2, 2, 8, 2, 9, 7, 5, 5, 7, 1, 9, 8, 1, 1, 7, 3, 0, 3, 9, 1, 5, 9, 6, 1, 1, 0, 7, 5, 2, 9, 7, 6, 2, 6, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0315771357190039419560337803437163963477729963832486145790258341228297557...
		

Crossrefs

Cf. A003627 (primes 3k-1), A000584 (n^5), A085965 (PrimeZeta(5)), A021247 (1/3^5).
Cf. A343625 (same for primes 3k+1), A086035 (for primes 4k+1), A085994 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343615_upto(N=100, s=5)={localprec(N+5); digits((sumeulerrat(1/p^s)-1/3^s-PrimeZeta31(s)+1)\.1^N)[^1]} \\ see A175644 for the function PrimeZeta31, A343612 for a function PrimeZeta32

Formula

P_{3,2}(5) = P(5) - 1/3^5 - P_{3,1}(5).
Showing 1-3 of 3 results.