cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A085991 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+3.

Original entry on oeis.org

1, 4, 8, 4, 3, 3, 6, 5, 6, 4, 6, 7, 0, 0, 7, 8, 2, 8, 2, 2, 5, 8, 6, 5, 0, 7, 7, 4, 9, 0, 7, 1, 1, 3, 7, 1, 8, 8, 7, 5, 5, 5, 8, 4, 1, 7, 4, 4, 8, 0, 6, 8, 8, 9, 4, 4, 2, 5, 0, 7, 5, 0, 8, 0, 5, 5, 2, 9, 8, 2, 0, 0, 3, 1, 9, 7, 6, 8, 2, 2, 9, 3, 0, 6, 4, 3, 0, 9, 8, 6, 8, 5, 0, 6, 7, 2, 4, 6, 9, 0, 9, 3, 5, 0, 7
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.14843365646700782822586507749... = 1/3^2 + 1/7^2 + 1/11^2 + 1/19^2 + 1/23^2 + ...
		

Crossrefs

Cf. A086032 (analog for primes 4k+1), A085548 (PrimeZeta(2)), A002145.
Cf. A085992 .. A085998 (Zeta_R(3..9)).

Programs

  • Mathematica
    digits = 1000; nmax0 = 500; dnmax = 10;
    Clear[PrimeZeta43];
    PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[(MoebiusMu[2n + 1] ((4n + 2) Log[2] + Log[((-1 + 2^(4n + 2)) Zeta[4n + 2])/(Zeta[4 n + 2, 1/4] - Zeta[4n + 2, 3/4])]))/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta43[2, nmax = nmax0];
    PrimeZeta43[2, nmax += dnmax];
    While[Abs[PrimeZeta43[2, nmax] - PrimeZeta43[2, nmax - dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta43[2] = PrimeZeta43[2, nmax];
    RealDigits[PrimeZeta43[2], 10, digits][[1]] (* Jean-François Alcover, Jun 21 2011, updated May 06 2021 *)
  • PARI
    PrimeZeta43(s)={suminf(n=0, my(t=s+s*n*2); moebius(n*2+1)*log(zeta(t)/(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))*(4^t-2^t))/(n*2+1))/2}
    A085991_upto(N=100)={localprec(N+3); digits((PrimeZeta43(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 25 2021

Formula

Zeta_R(2) = Sum_{primes p == 3 (mod 4)} 1/p^2
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*2))/(2*n+1),
where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

A175644 Decimal expansion of the sum 1/p^2 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 3, 3, 2, 1, 5, 5, 5, 0, 3, 2, 2, 2, 1, 7, 9, 5, 0, 5, 5, 2, 9, 2, 7, 1, 7, 7, 7, 8, 0, 1, 3, 8, 0, 9, 6, 4, 8, 1, 0, 8, 7, 5, 6, 6, 6, 5, 3, 2, 6, 6, 8, 3, 0, 5, 7, 3, 2, 8, 8, 5, 6, 6, 2, 4, 6, 2, 6, 8, 3, 6, 7, 2, 4, 1, 5, 4, 3, 4, 2, 8, 9, 8, 8, 9, 4, 4, 1, 7, 3, 9, 9, 4, 4, 1, 7, 0, 5, 8, 1, 5, 9, 7, 4, 4, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The prime zeta modulo function at 2 for primes of the form 3k+1, which is P_{3,2}(2) = Sum_{p in A002476} 1/p^2 = 1/7^2 + 1/13^2 + 1/19^2 + 1/31^2 + ...
The complementary Sum_{p in A003627} 1/p^2 is given by P_{3,2}(2) = A085548 - 1/3^2 - (this value here) = 0.307920758607736436842505075940... = A343612.

Examples

			P_{3,1}(2) = 0.03321555032221795055292717778013809648108756665...
		

Crossrefs

Cf. A086032 (P_{4,1}(2): same for p==1 (mod 4)), A175645 (P_{3,1}(3): same for 1/p^3), A343612 (P_{3,2}(2): same for p==2 (mod 3)), A085548 (PrimeZeta(2)).

Programs

  • Mathematica
    With[{s=2}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
    digits = 1003;
    m = 100; (* initial value of n beyond which summand is considered negligible *)
    dm = 100; (* increment of m *)
    P[s_, m_] (* "P" short name for "PrimeZeta31" *):= P[s, m] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1]* ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, m}] // N[#, digits+10]&;
    P[2, m]; P[2, m += dm];
    While[ RealDigits[P[2,    m]][[1]][[1;;digits]] !=
           RealDigits[P[2, m-dm]][[1]][[1;;digits]], Print["m = ", m]; m+=dm];
    Join[{0}, RealDigits[P[2, m]][[1]][[1;;digits]]] (* Jean-François Alcover, Jun 24 2022, after Vaclav Kotesovec *)
  • PARI
    my(s=0); forprimestep(p=1, 1e8, 3, s+=1./p^2); s \\ For illustration: primes up to 10^N give only about 2N+2 (= 18 for N=8) correct digits. - M. F. Hasler, Apr 23 2021
    
  • PARI
    PrimeZeta31(s)=suminf(n=0,my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t,1/6)-zetahurwitz(t,5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2)) \\ Inspired from Kotesovec's Mmca code
    A175644_upto(N=100)={localprec(N+5);digits((PrimeZeta31(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 23 2021

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A086039 Decimal expansion of the prime zeta modulo function at 9 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5, 1, 2, 1, 0, 2, 8, 1, 2, 2, 5, 2, 7, 7, 3, 8, 3, 8, 3, 2, 5, 9, 8, 9, 8, 5, 9, 7, 0, 6, 3, 4, 7, 2, 0, 0, 5, 3, 9, 6, 5, 9, 8, 5, 6, 9, 3, 9, 1, 5, 0, 4, 8, 0, 3, 7, 5, 7, 1, 4, 1, 8, 0, 6, 9, 7, 3, 3, 0, 0, 2, 2, 5, 9, 8, 4, 5, 2, 9, 6, 7, 4, 2, 5, 7, 7, 9, 2, 2, 0, 0, 1, 2, 6, 5, 9, 9, 4, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			5.121028122527738383259898597063472005396598569391504803757141806973300...* 10^-7
		

Crossrefs

Cf. A085998 (same for primes 4k+3), A343629 (for primes 3k+1), A343619 (for primes 3k+2), A086032 - A086038 (for 1/p^2, ..., 1/p^8), A085969 (PrimeZeta(9)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1004;
    nmax0 = 50; (* initial number of sum terms *)
    dnmax = 10; (* nmax increment *)
    dd = 10; (* precision excess *)
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2 s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2 n + 1]*Log[f[(2 n + 1)*9]]/(2 n + 1), {n, 0, nmax}] // N[#, digits + dd]&;
    PrimeZeta41[9, nmax = nmax0];
    PrimeZeta41[9, nmax += dnmax];
    While[Abs[PrimeZeta41[9, nmax] - PrimeZeta41[9, nmax - dnmax]] > 10^-(digits + dd), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[9] = PrimeZeta41[9, nmax];
    Join[{0, 0, 0, 0, 0, 0}, RealDigits[PrimeZeta41[9], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 07 2021 *)
  • PARI
    A086039_upto(N=100)={localprec(N+3); digits((PrimeZeta41(9)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(9) = Sum_{p in A002144} 1/p^9, where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(9m)*zeta(9m)/zeta(18m)/(1 + 2^(-9m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A343612 Decimal expansion of P_{3,2}(2) = Sum 1/p^2 over primes == 2 (mod 3).

Original entry on oeis.org

3, 0, 7, 9, 2, 0, 7, 5, 8, 6, 0, 7, 7, 3, 6, 4, 3, 6, 8, 4, 2, 5, 0, 5, 0, 7, 5, 9, 4, 0, 9, 9, 8, 7, 2, 6, 5, 8, 1, 0, 3, 2, 6, 6, 5, 4, 7, 5, 5, 1, 4, 4, 8, 0, 0, 5, 2, 0, 1, 9, 2, 5, 2, 9, 9, 3, 7, 8, 5, 5, 4, 9, 0, 1, 1, 2, 5, 6, 3, 3, 4, 3, 4, 8, 9, 0, 2, 2, 5, 9, 2, 4, 9, 3, 7, 8, 6, 8, 8, 9, 5, 1, 9, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.30792075860773643684250507594099872658103266547551448005201925299378554901...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085548 (PrimeZeta(2)), A021031 (1/27).
Cf. A175644 (same for primes 3k+1), A086032 (for primes 4k+1), A085991 (for primes 4k+3), A343613 - A343619 (P_{3,2}(s): same with 1/p^s, s = 3, ..., 9).

Programs

  • Mathematica
    digits = 105; nmax0 = 20; dnmax = 5;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta31[2, nmax = nmax0];
    PrimeZeta31[2, nmax += dnmax];
    While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
    RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
  • PARI
    s=0; forprimestep(p=2,1e8,3,s+=1./p^2);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
    A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}

Formula

P_{3,2}(2) = P(2) - 1/3^2 - P_{3,1}(2) = A085548 - A000012 - A175644.

A086033 Decimal expansion of the prime zeta modulo function at 3 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 8, 7, 5, 5, 0, 8, 2, 7, 3, 2, 9, 7, 0, 5, 0, 4, 4, 9, 4, 2, 2, 6, 7, 6, 5, 8, 1, 3, 7, 4, 6, 6, 7, 5, 0, 5, 1, 1, 1, 2, 0, 6, 1, 2, 2, 0, 4, 2, 5, 4, 7, 2, 4, 4, 0, 0, 2, 6, 3, 7, 4, 9, 8, 9, 9, 0, 8, 7, 1, 5, 1, 0, 0, 0, 5, 8, 9, 2, 9, 8, 0, 3, 4, 9, 6, 4, 6, 5, 5, 6, 2, 8, 9, 2, 5, 1, 2, 4, 1, 2, 8, 6, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.008755082732970504494226765813746675051112061220425472440026374989908715100...
		

Crossrefs

Cf. A085992 (same for primes 4k+3), A175645 (for primes 3k+1), A343613 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 110; $MaxExtraPrecision = 470; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*3]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086033_upto(N=100)={localprec(N+3);digits((PrimeZeta41(3)+1)\.1^N)[^1]} \\ See A086032 for the function PrimeZeta41. - M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(3) = Sum_{p in A002144} 1/p^3 where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(3m)*zeta(3m)/zeta(6m)/(1+8^-m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
Equals A085541 - 1/2^3 - A085992. - R. J. Mathar, Apr 03 2011

A086035 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 3, 2, 3, 4, 7, 4, 0, 3, 4, 2, 2, 1, 7, 9, 7, 5, 1, 8, 5, 1, 1, 9, 0, 8, 1, 8, 6, 0, 4, 1, 0, 8, 3, 9, 7, 7, 4, 4, 2, 7, 3, 3, 7, 0, 5, 7, 9, 9, 1, 4, 7, 3, 3, 6, 6, 9, 5, 9, 3, 3, 5, 7, 2, 6, 3, 0, 2, 6, 0, 1, 1, 4, 7, 7, 7, 0, 1, 1, 8, 6, 0, 4, 0, 0, 0, 5, 7, 1, 1, 7, 6, 8, 7, 2, 1, 8, 1, 6, 6, 8, 0, 1
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0003234740342217975185119081860410839774427337057991473366959335726302601...
		

Crossrefs

Cf. A085994 (same for primes 4k+3), A343625 (for primes 3k+1), A343615 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085965 (PrimeZeta(5)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1004; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[5(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m-dm]] < 10^(-digits-dd), Print[m]; m += dm];
    Join[{0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086035_upto(N=100)={localprec(N+3); digits((PrimeZeta41(5)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(5) = Sum_{p in A002144} 1/p^5 where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m *log(DirichletBeta(5m)*zeta(5m)/zeta(10m)/(1+2^(-5m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086036 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 6, 4, 2, 5, 0, 9, 6, 3, 6, 6, 4, 7, 7, 3, 7, 9, 1, 1, 0, 1, 8, 1, 9, 1, 3, 8, 0, 4, 3, 5, 7, 6, 5, 9, 8, 9, 8, 4, 5, 4, 5, 5, 4, 6, 9, 7, 8, 8, 1, 5, 0, 5, 2, 8, 9, 8, 5, 6, 6, 2, 5, 8, 4, 3, 8, 9, 8, 4, 5, 2, 0, 0, 9, 7, 7, 4, 5, 3, 2, 3, 9, 4, 4, 7, 4, 5, 8, 2, 6, 4, 7, 0, 4, 5, 7, 0, 1, 1, 9, 4, 4
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			6.4250963664773791101819138043576598984545546978815052898566258438984520...*10^-5
		

Crossrefs

Cf. A085995 (same for primes 4k+3), A343626 (for primes 3k+1), A343616 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085966 (PrimeZeta(6)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1003; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1 + 2^-s)^-1 DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits + dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1]*Log[b[(2n + 1)*6]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086036_upto(N=100)={localprec(N+3); digits((PrimeZeta41(6)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(6) = Sum_{p in A002144} 1/p^6 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(6m)*zeta(6m)/zeta(12m)/(1+2^(-6m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086038 Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 5, 6, 1, 3, 7, 1, 6, 8, 0, 3, 9, 6, 4, 6, 9, 8, 0, 8, 2, 4, 8, 4, 3, 2, 3, 1, 2, 4, 7, 3, 9, 3, 6, 4, 4, 7, 2, 6, 0, 6, 0, 1, 8, 0, 7, 2, 9, 8, 8, 7, 0, 6, 6, 6, 7, 5, 4, 5, 9, 9, 1, 7, 4, 7, 4, 1, 2, 1, 1, 1, 8, 8, 8, 4, 8, 9, 3, 8, 8, 9, 7, 9, 8, 9, 1, 4, 8, 1, 7, 8, 0, 3, 0, 3, 0, 1, 3, 7, 6
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			2.56137168039646980824843231247393644726060180729887066675459917474121... * 10^-6
		

Crossrefs

Cf. A085997 (same for primes 4k+3), A343628 (for primes 3k+1), A343618 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085968 (PrimeZeta(8)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1000; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1+2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[8(2n + 1)]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}] ; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086038_upto(N=100)={localprec(N+3); digits((PrimeZeta41(8)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(8) = Sum_{p in A002144} 1/p^8, where A002144 = {primes p == 1 (mod 4)};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(8m)*zeta(8m)/zeta(16m)/(1+2^(-8m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A086034 Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 1, 6, 4, 9, 5, 8, 4, 1, 5, 4, 0, 2, 9, 2, 9, 1, 5, 9, 8, 9, 9, 6, 7, 6, 1, 3, 1, 3, 6, 3, 8, 8, 5, 1, 8, 2, 7, 4, 8, 7, 9, 0, 9, 9, 4, 3, 8, 3, 4, 7, 3, 2, 1, 4, 7, 8, 1, 1, 5, 2, 5, 8, 3, 8, 8, 0, 0, 4, 9, 7, 5, 1, 7, 8, 7, 7, 7, 8, 8, 9, 3, 6, 8, 0, 1, 8, 2, 8, 0, 8, 7, 2, 2, 3, 0, 3, 6, 4, 6, 3, 9, 2, 9
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.0016495841540292915989967613136388518274879099438347321478115258388...
		

Crossrefs

Cf. A085993 (same for primes 4k+3), A343624 (for primes 3k+1), A343614 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 680; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*4]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)
  • PARI
    A086034_upto(N=100)={localprec(N+3); digits((PrimeZeta41(4)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(4) = Sum_{p in A002144} 1/p^4 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(4m)*zeta(4m)/zeta(8m)/(1+2^(-4m)))[using Gourdon & Sebah, Theorem 11] - M. F. Hasler, Apr 26 2021.

Extensions

Edited by M. F. Hasler, Apr 26 2021
Showing 1-10 of 13 results. Next