cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002476 Primes of the form 6m + 1.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
A039701(A049084(a(n))) = A134323(A049084(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2007
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024

Examples

			Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

For values of m see A024899. Primes of form 3n - 1 give A003627.
These are the primes arising in A024892, A024899, A034936.
A091178 gives prime index.
Subsequence of A016921 and of A050931.
Cf. A004611 (multiplicative closure).

Programs

  • GAP
    Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
  • Haskell
    a002476 n = a002476_list !! (n-1)
    a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • J
    (#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
    
  • Magma
    [n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A003627 Primes of the form 3n-1.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p such that 1+x+x^2 is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p dividing sum(k=0,p,C(2k,k)) -1 = A006134(p)-1. - Benoit Cloitre, Feb 08 2003
A039701(A049084(a(n))) = 2; A134323(A049084(a(n))) = -1. - Reinhard Zumkeller, Oct 21 2007
The set of primes of the form 3n - 1 is a superset of the set of lesser of twin primes larger than three (A001359). - Paul Muljadi, Jun 05 2008
Primes of this form do not occur in or as divisors of {n^2+n+1}. See A002383 (n^2+n+1 = prime), A162471 (prime divisors of n^2+n+1 not in A002383), and A002061 (numbers of the form n^2-n+1). - Daniel Tisdale, Jul 04 2009
Or, primes not in A007645. A003627 UNION A007645 = A000040. Also, primes of the form 6*k-5/2-+3/2. - Juri-Stepan Gerasimov, Jan 28 2010
Except for first term "2", all these prime numbers are of the form: 6*n-1. - Vladimir Joseph Stephan Orlovsky, Jul 13 2011
A088534(a(n)) = 0. - Reinhard Zumkeller, Oct 30 2011
For n>1: Numbers k such that (k-4)! mod k =(-1)^(floor(k/3)+1)*floor((k+1)/6), k>4. - Gary Detlefs, Jan 02 2012
Binomial(a(n),3)/a(n)= (3*A024893(n)^2+A024893(n))/2, n>1. - Gary Detlefs, May 06 2012
For every prime p in this sequence, 3 is a 9th power mod p. See Williams link. - Michel Marcus, Nov 12 2017
2 adjoined to A007528. - David A. Corneth, Nov 12 2017
For n >= 2 there exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes of form 3n+1 give A002476.
These are the primes arising in A024893, A087370, A088879. A091177 gives prime index.
Subsequence of A034020.

Programs

  • Haskell
    a003627 n = a003627_list !! (n-1)
    a003627_list = filter ((== 2) . (`mod` 3)) a000040_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Magma
    [n: n in PrimesUpTo(720) | n mod 3 eq 2]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    t1 := {}; for n from 0 to 500 do if isprime(3*n+2) then t1 := {op(t1),3*n+2}; fi; od: A003627 := convert(t1,list);
  • Mathematica
    Select[Range[-1, 600, 3], PrimeQ[#] &] (* Vincenzo Librandi, Jun 17 2015 *)
    Select[Prime[Range[200]],Mod[#,3]==2&] (* Harvey P. Dale, Jan 31 2023 *)
  • PARI
    is(n)=n%3==2 && isprime(n) \\ Charles R Greathouse IV, Mar 20 2013

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n>=1} 1/a(n)^2 = 0.30792... = A085548 - 1/9 - A175644.
Sum_{n>=1} 1/a(n)^3 = 0.134125... = A085541 - 1/27 - A175645. (End)

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

A175645 Decimal expansion of the sum 1/p^3 over primes == 1 (mod 3).

Original entry on oeis.org

0, 0, 3, 6, 0, 0, 4, 2, 3, 3, 4, 6, 9, 4, 2, 9, 5, 8, 9, 5, 7, 4, 7, 6, 9, 4, 7, 6, 2, 9, 2, 3, 8, 4, 6, 4, 9, 4, 2, 4, 9, 5, 1, 6, 5, 1, 3, 6, 9, 4, 3, 9, 1, 5, 4, 8, 1, 0, 3, 5, 8, 7, 3, 5, 1, 0, 7, 4, 1, 2, 0, 2, 5, 3, 5, 0, 4, 4, 6, 1, 2, 9, 2, 7, 0, 6, 8, 5, 0, 9, 7, 5, 9, 5, 3, 2, 0, 7, 9, 1, 7, 2, 9, 6, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Prime Zeta modulo function at 3 for primes of the form 3k+1, which is Sum_{prime p in A002476} 1/p^3 = 1/7^3 + 1/13^3 + 1/19^3 + 1/31^3 + ...
The complementary sum, Sum_{prime p in A003627} 1/p^3 is given by P_{3,2}(3) = A085541 - 1/3^3 - (this value here) = 0.13412517891546354042859932999943119899...

Examples

			P_{3,1}(3) = 0.00360042334694295895747694762923846494249516...
		

Crossrefs

Cf. A086033 (P_{4,1}(3): same for p==1 (mod 4)), A175644 (P_{3,1}(2): same for 1/p^2), A343613 (P_{3,2}(3): same for p==2 (mod 3)), A085541 (PrimeZeta(3)).

Programs

  • Mathematica
    (* A naive solution yielding 12 correct digits: *) s1 = s2 = 0.; Do[Switch[Mod[n, 3], 1, If[PrimeQ[n], s1 += 1/n^3], 2, If[PrimeQ[n], s2 += 1/n^3]], {n, 10^7}]; Join[{0, 0}, RealDigits[(PrimeZetaP[3] + s1 - s2 - 1/27)/2, 10, 12][[1]]] (* Jean-François Alcover, Mar 15 2018 *)
    With[{s=3}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    $MaxExtraPrecision = 1000; digits = 121; Join[{0,0}, RealDigits[Chop[N[P[3, 1, 3], digits]], 10, digits-1][[1]]] (* Vaclav Kotesovec, Jan 22 2021 *)
  • PARI
    s=0; forprimestep(p=1,1e8,3,s+=1./p^3);s \\ for illustration only: primes up to 10^N give about 2N+2 correct digits. - M. F. Hasler, Apr 22 2021
    A175645_upto(N=100)=localprec(N+5);digits((PrimeZeta31(3)+1)\.1^N)[^1] \\ Cf. A175644 for PrimeZeta31. - M. F. Hasler, Apr 23 2021

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A343612 Decimal expansion of P_{3,2}(2) = Sum 1/p^2 over primes == 2 (mod 3).

Original entry on oeis.org

3, 0, 7, 9, 2, 0, 7, 5, 8, 6, 0, 7, 7, 3, 6, 4, 3, 6, 8, 4, 2, 5, 0, 5, 0, 7, 5, 9, 4, 0, 9, 9, 8, 7, 2, 6, 5, 8, 1, 0, 3, 2, 6, 6, 5, 4, 7, 5, 5, 1, 4, 4, 8, 0, 0, 5, 2, 0, 1, 9, 2, 5, 2, 9, 9, 3, 7, 8, 5, 5, 4, 9, 0, 1, 1, 2, 5, 6, 3, 3, 4, 3, 4, 8, 9, 0, 2, 2, 5, 9, 2, 4, 9, 3, 7, 8, 6, 8, 8, 9, 5, 1, 9, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.30792075860773643684250507594099872658103266547551448005201925299378554901...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085548 (PrimeZeta(2)), A021031 (1/27).
Cf. A175644 (same for primes 3k+1), A086032 (for primes 4k+1), A085991 (for primes 4k+3), A343613 - A343619 (P_{3,2}(s): same with 1/p^s, s = 3, ..., 9).

Programs

  • Mathematica
    digits = 105; nmax0 = 20; dnmax = 5;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta31[2, nmax = nmax0];
    PrimeZeta31[2, nmax += dnmax];
    While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
    RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
  • PARI
    s=0; forprimestep(p=2,1e8,3,s+=1./p^2);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
    A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}

Formula

P_{3,2}(2) = P(2) - 1/3^2 - P_{3,1}(2) = A085548 - A000012 - A175644.

A343624 Decimal expansion of the Prime Zeta modulo function P_{3,1}(4) = Sum 1/p^4 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 4, 6, 1, 3, 1, 5, 0, 5, 5, 3, 4, 3, 3, 8, 6, 9, 4, 0, 1, 7, 4, 5, 3, 0, 3, 3, 3, 4, 0, 9, 4, 5, 4, 3, 3, 9, 9, 3, 9, 0, 1, 8, 3, 5, 3, 8, 1, 6, 8, 7, 0, 3, 6, 7, 9, 6, 6, 8, 3, 7, 5, 9, 6, 2, 4, 8, 9, 7, 8, 8, 5, 3, 2, 7, 9, 5, 2, 8, 8, 5, 0, 0, 2, 1, 9, 0, 0, 8, 5, 6, 6, 6, 8, 3, 6, 9, 7
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 4 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^4 = 1/7^4 + 1/13^4 + 1/19^4 + 1/31^4 + ...
The complementary Sum_{primes in A003627} 1/p^4 is given by P_{3,2}(4) = A085964 - 1/3^4 - (this value here) = 0.064186145696557778990099... = A343614.

Examples

			P_{3,1}(4) = 0.000461315055343386940174530333409454339939018353816870...
		

Crossrefs

Cf. A175645, A343625 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3, 5,..., 9).
Cf. A343614 (P_{3,2}(4): same for p==2 (mod 3)), A086034 (P_{4,1}(4): same for p==1 (mod 4)), A085964 (PrimeZeta(4)).

Programs

  • Mathematica
    With[{s=4}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^4); s \\ Naïve, for illustration: primes up to 10^N give about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343606_upto(N=100)={localprec(N+5);digits((PrimeZeta31(4)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343629 Decimal expansion of the Prime Zeta modulo function P_{3,1}(9) = Sum 1/p^9 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 4, 8, 7, 8, 3, 7, 8, 4, 4, 6, 0, 8, 2, 1, 3, 5, 8, 7, 3, 8, 3, 8, 2, 1, 5, 9, 3, 7, 8, 7, 6, 3, 4, 0, 6, 7, 2, 3, 0, 8, 2, 5, 9, 9, 4, 7, 3, 4, 0, 8, 1, 5, 2, 5, 9, 4, 9, 1, 8, 7, 4, 6, 7, 2, 3, 8, 2, 1, 9, 0, 9, 2, 0, 8, 9, 0, 0, 5, 0, 1, 9, 8, 4, 2, 1, 9, 4, 7, 7, 0, 1, 4
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 9 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^9 = 1/7^9 + 1/13^9 + 1/19^9 + 1/31^9 + ...
The complementary Sum_{primes in A003627} 1/p^8 is given by P_{3,2}(8) = A085969 - 1/3^9 - (this value here) = 0.0039088148233885949714061... = A343609.

Examples

			P_{3,1}(9) = 2.4878378446082135873838215937876340672308259947340815...*10^-8
		

Crossrefs

Cf. A086039 (P_{4,1}(9): same for p==1 (mod 4)), A175645, A343624 - A343628 (P_{3,1}(3..8): same for 1/p^n, n = 3..8), A343609 (P_{3,2}(9): same for p==2 (mod 3)).
Cf. A085969 (PrimeZeta(9)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=9}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^9); s \\ For illustration: primes up to 10^N give ~ 8N+2 (= 66 for N=8) correct digits.
    
  • PARI
    A343629_upto(N=100)={localprec(N+5);digits((PrimeZeta31(9)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343625 Decimal expansion of the Prime Zeta modulo function P_{3,1}(5) = Sum 1/p^5 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 6, 2, 6, 5, 5, 4, 2, 7, 4, 7, 1, 7, 5, 5, 5, 0, 6, 0, 0, 2, 5, 6, 9, 1, 9, 1, 0, 2, 4, 0, 8, 8, 4, 4, 6, 4, 7, 5, 7, 2, 0, 6, 7, 2, 6, 2, 0, 8, 2, 4, 1, 0, 6, 9, 5, 1, 6, 1, 4, 3, 6, 3, 6, 9, 7, 5, 1, 8, 8, 8, 4, 1, 3, 4, 3, 0, 7, 9, 7, 0, 3, 6, 1, 4, 6, 9, 3, 7, 9, 9, 5, 1, 9, 7, 3, 3
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 5 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^5 = 1/7^5 + 1/13^5 + 1/19^5 + 1/31^5 + ...
The complementary Sum_{primes in A003627} 1/p^5 is given by P_{3,2}(5) = A085965 - 1/3^5 - (this value here) = 0.03157713571900394195603378... = A343615.

Examples

			P_{3,1}(5) = 6.2655427471755506002569191024088446475720672620824106951614...*10^-5
		

Crossrefs

Cf. A086035 (P_{4,1}(5): same for p==1 (mod 4)), A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^s, s=3..9), A343615 (P_{3,2}(5): same for p==2 (mod 3)).
Cf. A085965 (PrimeZeta(5)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=5}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^5); s \\ Naïve, for illustration: primes up to 10^N give 4N+2 (= 34 for N=8) correct digits.
    
  • PARI
    A343607_upto(N=100)={localprec(N+5);digits((PrimeZeta31(5)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343626 Decimal expansion of the Prime Zeta modulo function P_{3,1}(6) = Sum 1/p^6 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 7, 3, 0, 0, 1, 1, 0, 2, 3, 1, 9, 8, 1, 6, 7, 0, 1, 2, 0, 4, 2, 7, 7, 9, 1, 4, 5, 2, 3, 1, 9, 4, 9, 5, 6, 1, 0, 7, 9, 7, 6, 4, 5, 3, 9, 1, 8, 3, 6, 9, 8, 9, 7, 1, 7, 7, 1, 3, 8, 1, 3, 6, 2, 9, 8, 3, 2, 9, 4, 5, 3, 8, 7, 6, 4, 9, 6, 9, 9, 3, 6, 1, 8, 5, 8, 6, 2, 3, 2, 9, 3, 3, 4, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 6 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^6 = 1/7^6 + 1/13^6 + 1/19^6 + 1/31^6 + ...
The complementary Sum_{primes in A003627} 1/p^6 is given by P_{3,2}(6) = A085966 - 1/3^6 - (this value here) = 0.015689614727130461563527666... = A343606.

Examples

			P_{3,1}(6) = 8.7300110231981670120427791452319495610797645391837...*10^-8
		

Crossrefs

Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n=3..9), A343606 (P_{3,2}(6): same for p==2 (mod 3)), A086036 (P_{4,1}(6): same for p==1 (mod 4)).
Cf. A085966 (PrimeZeta(6)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=6}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^6); s \\ For illustration: primes up to 10^N give 5N+2 (= 42 for N=8) correct digits.
    
  • PARI
    A343626_upto(N=100)={localprec(N+5);digits((PrimeZeta31(6)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31

A343628 Decimal expansion of the Prime Zeta modulo function P_{3,1}(8) = Sum 1/p^8 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 4, 7, 5, 2, 8, 5, 3, 3, 6, 3, 0, 0, 8, 7, 1, 7, 9, 9, 4, 1, 0, 9, 0, 8, 7, 9, 7, 0, 3, 8, 1, 1, 0, 4, 7, 4, 0, 4, 9, 1, 9, 7, 7, 3, 4, 6, 2, 8, 1, 7, 7, 9, 6, 6, 7, 9, 6, 1, 3, 7, 9, 8, 3, 7, 4, 9, 9, 6, 3, 5, 3, 6, 4, 5, 7, 9, 2, 3, 2, 5, 8, 3, 2, 9, 9, 5, 9, 9, 0, 2, 0, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 23 2021

Keywords

Comments

The Prime Zeta modulo function at 8 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^8 = 1/7^8 + 1/13^8 + 1/19^8 + 1/31^8 + ...
The complementary Sum_{primes in A003627} 1/p^8 is given by P_{3,2}(8) = A085968 - 1/3^8 - (this value here) = 0.0039088148233885949714061... = A343608.

Examples

			P_{3,1}(8) = 1.7475285336300871799410908797038110474049197734628...*10^-7
		

Crossrefs

Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n = 3..9), A343608 (P_{3,2}(8): same for p==2 (mod 3)), A086038 (P_{4,1}(8): same for p==1 (mod 4)).
Cf. A085968 (PrimeZeta(8)), A002476 (primes of the form 3k+1).

Programs

  • Mathematica
    With[{s=8}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
  • PARI
    s=0; forprimestep(p=1, 1e8, 3, s+=1./p^8); s \\ For illustration: primes up to 10^N give ~ 7N+2 (= 58 for N=8) correct digits.
    
  • PARI
    A343628_upto(N=100)={localprec(N+5);digits((PrimeZeta31(8)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31
Showing 1-10 of 12 results. Next