cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

A175644 Decimal expansion of the sum 1/p^2 over primes p == 1 (mod 3).

Original entry on oeis.org

0, 3, 3, 2, 1, 5, 5, 5, 0, 3, 2, 2, 2, 1, 7, 9, 5, 0, 5, 5, 2, 9, 2, 7, 1, 7, 7, 7, 8, 0, 1, 3, 8, 0, 9, 6, 4, 8, 1, 0, 8, 7, 5, 6, 6, 6, 5, 3, 2, 6, 6, 8, 3, 0, 5, 7, 3, 2, 8, 8, 5, 6, 6, 2, 4, 6, 2, 6, 8, 3, 6, 7, 2, 4, 1, 5, 4, 3, 4, 2, 8, 9, 8, 8, 9, 4, 4, 1, 7, 3, 9, 9, 4, 4, 1, 7, 0, 5, 8, 1, 5, 9, 7, 4, 4, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The prime zeta modulo function at 2 for primes of the form 3k+1, which is P_{3,2}(2) = Sum_{p in A002476} 1/p^2 = 1/7^2 + 1/13^2 + 1/19^2 + 1/31^2 + ...
The complementary Sum_{p in A003627} 1/p^2 is given by P_{3,2}(2) = A085548 - 1/3^2 - (this value here) = 0.307920758607736436842505075940... = A343612.

Examples

			P_{3,1}(2) = 0.03321555032221795055292717778013809648108756665...
		

Crossrefs

Cf. A086032 (P_{4,1}(2): same for p==1 (mod 4)), A175645 (P_{3,1}(3): same for 1/p^3), A343612 (P_{3,2}(2): same for p==2 (mod 3)), A085548 (PrimeZeta(2)).

Programs

  • Mathematica
    With[{s=2}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
    digits = 1003;
    m = 100; (* initial value of n beyond which summand is considered negligible *)
    dm = 100; (* increment of m *)
    P[s_, m_] (* "P" short name for "PrimeZeta31" *):= P[s, m] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1]* ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, m}] // N[#, digits+10]&;
    P[2, m]; P[2, m += dm];
    While[ RealDigits[P[2,    m]][[1]][[1;;digits]] !=
           RealDigits[P[2, m-dm]][[1]][[1;;digits]], Print["m = ", m]; m+=dm];
    Join[{0}, RealDigits[P[2, m]][[1]][[1;;digits]]] (* Jean-François Alcover, Jun 24 2022, after Vaclav Kotesovec *)
  • PARI
    my(s=0); forprimestep(p=1, 1e8, 3, s+=1./p^2); s \\ For illustration: primes up to 10^N give only about 2N+2 (= 18 for N=8) correct digits. - M. F. Hasler, Apr 23 2021
    
  • PARI
    PrimeZeta31(s)=suminf(n=0,my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t,1/6)-zetahurwitz(t,5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2)) \\ Inspired from Kotesovec's Mmca code
    A175644_upto(N=100)={localprec(N+5);digits((PrimeZeta31(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 23 2021

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A343619 Decimal expansion of P_{3,2}(9) = Sum 1/p^9 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 1, 9, 5, 3, 6, 3, 7, 4, 3, 3, 1, 5, 8, 7, 1, 3, 7, 2, 0, 8, 0, 4, 6, 0, 1, 5, 1, 2, 3, 9, 2, 9, 1, 7, 6, 0, 6, 9, 3, 3, 5, 0, 0, 3, 9, 1, 2, 2, 2, 0, 6, 4, 6, 2, 9, 1, 6, 2, 6, 1, 3, 4, 0, 4, 2, 4, 6, 8, 4, 9, 4, 2, 8, 9, 4, 9, 0, 3, 2, 9, 3, 0, 3, 4, 2, 1, 7, 9, 3, 7, 8, 2, 6, 9, 0, 7, 9, 1, 2, 4, 6, 3, 8
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0019536374331587137208046015123929176069335003912220646291626134042468494...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001017 (n^9), A085969 (PrimeZeta(9)).
Cf. A343612 - A343618 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 8).
Cf. A343629 (for primes 3k+1), A086039 (for primes 4k+1), A085998 (for primes 4k+3).

Programs

  • Mathematica
    digits = 1004; nmax0 = 50; dnmax = 10;
    Clear[PrimeZeta31];
    PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2 n + 1] ((1/(4 n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2 t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits + 5] &;
    PrimeZeta31[9, nmax = nmax0];
    PrimeZeta31[9, nmax += dnmax];
    While[Abs[PrimeZeta31[9, nmax] - PrimeZeta31[9, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta32[9] = PrimeZetaP[9] - 1/3^9 - PrimeZeta31[9, nmax];
    Join[{0, 0}, RealDigits[PrimeZeta32[9], 10, digits][[1]] ] (* Jean-François Alcover, May 07 2021, after M. F. Hasler's PARI code *)
  • PARI
    A343619_upto(N=100)={localprec(N+5); digits((PrimeZeta32(9)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(9) = Sum_{p in A003627} 1/p^9 = P(9) - 1/3^9 - P_{3,1}(9).

A343613 Decimal expansion of P_{3,2}(3) = Sum 1/p^3 over primes == 2 (mod 3).

Original entry on oeis.org

1, 3, 4, 1, 2, 5, 1, 7, 8, 9, 1, 5, 4, 6, 3, 5, 4, 0, 4, 2, 8, 5, 9, 9, 3, 2, 9, 9, 9, 9, 4, 3, 1, 1, 9, 8, 9, 9, 5, 8, 7, 9, 9, 1, 9, 7, 5, 2, 1, 6, 8, 3, 3, 7, 3, 7, 0, 5, 9, 9, 1, 0, 6, 1, 5, 3, 8, 5, 3, 3, 4, 9, 9, 5, 6, 0, 4, 7, 9, 3, 7, 6, 7, 1, 5, 2, 8, 6, 5, 3, 7, 4, 0, 4, 0, 3, 4, 4, 4, 3, 3, 6, 7, 8, 6
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.134125178915463540428599329999431198995879919752168337370599106153853349956...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085541 (PrimeZeta(3)), A021031 (1/27).
Cf. A175645 (same for p==1 (mod 3)), A086033 (for primes 4k+1), A085992 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^3);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    
  • PARI
    A343613_upto(N=100)={localprec(N+5); digits((PrimeZeta32(3)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32.

Formula

P_{3,2}(3) = P(3) - 1/3^3 - P_{3,1}(3) = A085541 - A021031 - A175645.

A343614 Decimal expansion of P_{3,2}(4) = Sum 1/p^4 over primes == 2 (mod 3).

Original entry on oeis.org

0, 6, 4, 1, 8, 6, 1, 4, 5, 6, 9, 6, 5, 5, 7, 7, 7, 8, 9, 9, 0, 0, 9, 9, 0, 8, 6, 5, 8, 7, 4, 0, 2, 7, 3, 6, 8, 0, 9, 7, 5, 6, 3, 6, 2, 3, 4, 8, 6, 8, 0, 6, 4, 0, 8, 8, 4, 6, 2, 5, 4, 9, 2, 2, 5, 0, 6, 2, 1, 9, 1, 2, 6, 2, 1, 9, 3, 8, 9, 9, 8, 6, 4, 7, 9, 6, 5, 5, 2, 6, 9, 1, 6, 3, 8, 2, 2, 4, 0, 7
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			P_{3,2}(4) = 0.06418614569655777899009908658740273681...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085964 (PrimeZeta(4)), A021085 (1/3^4).
Cf. A343624 (same for primes 3k+1), A086034 (for primes 4k+1), A085993 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343614_upto(N=100)={localprec(N+5); digits((PrimeZeta32(4)+1)\.1^N)[^1]} \\ see for the function PrimeZeta32.

Formula

P_{3,2}(4) = P(4) - 1/3^4 - P_{3,1}(4) = A085964 - A021085 - A343624.

A343615 Decimal expansion of P_{3,2}(5) = Sum 1/p^5 over primes == 2 (mod 3).

Original entry on oeis.org

0, 3, 1, 5, 7, 7, 1, 3, 5, 7, 1, 9, 0, 0, 3, 9, 4, 1, 9, 5, 6, 0, 3, 3, 7, 8, 0, 3, 4, 3, 7, 1, 6, 3, 9, 6, 3, 4, 7, 7, 7, 2, 9, 9, 6, 3, 8, 3, 2, 4, 8, 6, 1, 4, 5, 7, 9, 0, 2, 5, 8, 3, 4, 1, 2, 2, 8, 2, 9, 7, 5, 5, 7, 1, 9, 8, 1, 1, 7, 3, 0, 3, 9, 1, 5, 9, 6, 1, 1, 0, 7, 5, 2, 9, 7, 6, 2, 6, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0315771357190039419560337803437163963477729963832486145790258341228297557...
		

Crossrefs

Cf. A003627 (primes 3k-1), A000584 (n^5), A085965 (PrimeZeta(5)), A021247 (1/3^5).
Cf. A343625 (same for primes 3k+1), A086035 (for primes 4k+1), A085994 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
    
  • PARI
    A343615_upto(N=100, s=5)={localprec(N+5); digits((sumeulerrat(1/p^s)-1/3^s-PrimeZeta31(s)+1)\.1^N)[^1]} \\ see A175644 for the function PrimeZeta31, A343612 for a function PrimeZeta32

Formula

P_{3,2}(5) = P(5) - 1/3^5 - P_{3,1}(5).

A343616 Decimal expansion of P_{3,2}(6) = Sum 1/p^6 over primes == 2 (mod 3).

Original entry on oeis.org

0, 1, 5, 6, 8, 9, 6, 1, 4, 7, 2, 7, 1, 3, 0, 4, 6, 1, 5, 6, 3, 5, 2, 7, 6, 6, 6, 1, 5, 2, 2, 0, 9, 0, 9, 1, 8, 1, 4, 2, 0, 8, 6, 7, 5, 5, 5, 3, 0, 7, 7, 7, 6, 3, 3, 6, 6, 1, 5, 3, 1, 8, 8, 6, 7, 6, 4, 5, 7, 2, 3, 3, 5, 6, 2, 3, 7, 3, 0, 4, 0, 7, 0, 0, 5, 5, 2, 4, 2, 2, 1, 0, 3, 3, 6, 8, 4, 3, 5, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.015689614727130461563527666152209091814208675553077763366153188676457...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001014 (n^6), A085966 (PrimeZeta(6)), A021733 (1/3^6).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343626 (for primes 3k+1), A086036 (for primes 4k+1), A085995 (for primes 4k+3).

Programs

  • PARI
    A343616_upto(N=100)={localprec(N+5); digits((PrimeZeta32(6)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).

A343618 Decimal expansion of P_{3,2}(8) = Sum 1/p^8 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 3, 9, 0, 8, 8, 1, 4, 8, 2, 3, 3, 8, 8, 5, 9, 4, 9, 7, 1, 4, 0, 6, 1, 1, 5, 6, 6, 3, 0, 7, 2, 3, 2, 3, 9, 8, 1, 2, 2, 6, 1, 6, 1, 0, 6, 9, 3, 2, 4, 6, 9, 4, 9, 7, 8, 3, 5, 9, 8, 6, 4, 1, 8, 9, 3, 3, 2, 1, 7, 9, 5, 8, 6, 3, 0, 3, 3, 6, 9, 7, 1, 5, 5, 9, 6, 1, 7, 2, 6, 0, 4, 3, 1, 8, 3, 0, 8, 9, 2, 7, 6, 5, 9
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.003908814823388594971406115663072323981226161069324694978359864189332...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001016 (n^8), A085968 (PrimeZeta(8)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343628 (for primes 3k+1), A086038 (for primes 4k+1), A085997 (for primes 4k+3).

Programs

  • PARI
    A343618_upto(N=100)={localprec(N+5); digits((PrimeZeta32(8)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(8) = Sum_{p in A003627} 1/p^8 = P(8) - 1/3^8 - P_{3,1}(8).

A343617 Decimal expansion of P_{3,2}(7) = Sum 1/p^7 over primes == 2 (mod 3).

Original entry on oeis.org

0, 0, 7, 8, 2, 5, 3, 5, 4, 1, 1, 3, 0, 5, 0, 4, 9, 2, 8, 7, 4, 2, 5, 1, 7, 0, 1, 6, 7, 0, 7, 5, 5, 9, 2, 0, 6, 0, 3, 3, 0, 7, 9, 3, 0, 9, 7, 5, 1, 3, 2, 4, 4, 3, 3, 1, 4, 6, 8, 0, 4, 8, 8, 3, 3, 9, 4, 0, 3, 5, 4, 3, 7, 0, 6, 3, 8, 0, 9, 2, 1, 8, 4, 3, 5, 7, 0, 1, 1, 0, 5, 8, 6, 5, 3, 8, 3, 8, 6, 4, 5, 6, 2, 9, 5
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.0078253541130504928742517016707559206033079309751324433146804883394...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001015 (n^7), A085967 (PrimeZeta(7)).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343627 (for primes 3k+1), A086037 (for primes 4k+1), A085996 (for primes 4k+3).

Programs

  • PARI
    A343617_upto(N=100)={localprec(N+5); digits((PrimeZeta32(7)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(7) = Sum_{p in A003627} 1/p^7 = P(7) - 1/3^7 - P_{3,1}(7).
Showing 1-9 of 9 results.