cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085541 Decimal expansion of the prime zeta function at 3.

Original entry on oeis.org

1, 7, 4, 7, 6, 2, 6, 3, 9, 2, 9, 9, 4, 4, 3, 5, 3, 6, 4, 2, 3, 1, 1, 3, 3, 1, 4, 6, 6, 5, 7, 0, 6, 7, 0, 0, 9, 7, 5, 4, 1, 2, 1, 2, 1, 9, 2, 6, 1, 4, 9, 2, 8, 9, 8, 8, 8, 6, 7, 2, 0, 1, 6, 7, 0, 1, 6, 3, 1, 5, 8, 9, 5, 2, 8, 1, 2, 9, 5, 8, 7, 6, 3, 5, 6, 3, 4, 2, 0, 0, 5, 3, 6, 9, 7, 2, 5, 6, 0, 5, 4, 6, 7, 9, 1
Offset: 0

Views

Author

Cino Hilliard, Jul 02 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.1747626392994435364231...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), this sequence (at 3), A085964 (at 4) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(3,117)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    (* If Mathematica version >= 7.0 then RealDigits[PrimeZetaP[3]//N[#,105]&][[1]] else : *) m = 200; $MaxExtraPrecision = 200; PrimeZetaP[s_] := NSum[MoebiusMu[k]*Log[Zeta[k*s]]/k, {k, 1, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]; RealDigits[PrimeZetaP[3]][[1]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011 *)
  • PARI
    recip3(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^3; ); print(v) }
    
  • PARI
    sumeulerrat(1/p,3) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(3) = Sum_{p prime} 1/p^3 = Sum_{n>=1} mobius(n)*log(zeta(3*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A086033 + A085992 + 1/8. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A030078(k). - Amiram Eldar, Jul 27 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

A175645 Decimal expansion of the sum 1/p^3 over primes == 1 (mod 3).

Original entry on oeis.org

0, 0, 3, 6, 0, 0, 4, 2, 3, 3, 4, 6, 9, 4, 2, 9, 5, 8, 9, 5, 7, 4, 7, 6, 9, 4, 7, 6, 2, 9, 2, 3, 8, 4, 6, 4, 9, 4, 2, 4, 9, 5, 1, 6, 5, 1, 3, 6, 9, 4, 3, 9, 1, 5, 4, 8, 1, 0, 3, 5, 8, 7, 3, 5, 1, 0, 7, 4, 1, 2, 0, 2, 5, 3, 5, 0, 4, 4, 6, 1, 2, 9, 2, 7, 0, 6, 8, 5, 0, 9, 7, 5, 9, 5, 3, 2, 0, 7, 9, 1, 7, 2, 9, 6, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The Prime Zeta modulo function at 3 for primes of the form 3k+1, which is Sum_{prime p in A002476} 1/p^3 = 1/7^3 + 1/13^3 + 1/19^3 + 1/31^3 + ...
The complementary sum, Sum_{prime p in A003627} 1/p^3 is given by P_{3,2}(3) = A085541 - 1/3^3 - (this value here) = 0.13412517891546354042859932999943119899...

Examples

			P_{3,1}(3) = 0.00360042334694295895747694762923846494249516...
		

Crossrefs

Cf. A086033 (P_{4,1}(3): same for p==1 (mod 4)), A175644 (P_{3,1}(2): same for 1/p^2), A343613 (P_{3,2}(3): same for p==2 (mod 3)), A085541 (PrimeZeta(3)).

Programs

  • Mathematica
    (* A naive solution yielding 12 correct digits: *) s1 = s2 = 0.; Do[Switch[Mod[n, 3], 1, If[PrimeQ[n], s1 += 1/n^3], 2, If[PrimeQ[n], s2 += 1/n^3]], {n, 10^7}]; Join[{0, 0}, RealDigits[(PrimeZetaP[3] + s1 - s2 - 1/27)/2, 10, 12][[1]]] (* Jean-François Alcover, Mar 15 2018 *)
    With[{s=3}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    $MaxExtraPrecision = 1000; digits = 121; Join[{0,0}, RealDigits[Chop[N[P[3, 1, 3], digits]], 10, digits-1][[1]]] (* Vaclav Kotesovec, Jan 22 2021 *)
  • PARI
    s=0; forprimestep(p=1,1e8,3,s+=1./p^3);s \\ for illustration only: primes up to 10^N give about 2N+2 correct digits. - M. F. Hasler, Apr 22 2021
    A175645_upto(N=100)=localprec(N+5);digits((PrimeZeta31(3)+1)\.1^N)[^1] \\ Cf. A175644 for PrimeZeta31. - M. F. Hasler, Apr 23 2021

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A085992 Decimal expansion of the prime zeta modulo function at 3 for primes of the form 4k+3.

Original entry on oeis.org

0, 4, 1, 0, 0, 7, 5, 5, 6, 5, 6, 6, 4, 7, 3, 0, 3, 1, 9, 2, 8, 8, 8, 6, 5, 4, 8, 8, 5, 1, 9, 6, 0, 0, 2, 5, 9, 2, 4, 3, 0, 0, 0, 6, 0, 7, 0, 5, 7, 2, 3, 8, 1, 7, 4, 4, 8, 6, 4, 5, 6, 4, 1, 7, 1, 1, 7, 2, 2, 8, 7, 4, 4, 2, 8, 0, 7, 0, 6, 5, 7, 8, 3, 2, 1, 3, 7, 7, 3, 4, 9, 7, 4, 0, 8, 0, 0, 4, 8, 1, 3, 3, 9, 2, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Examples

			0.04100755656647303192888654885196002592430006070572381744864564171...
		

Crossrefs

Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086033 (analog for primes 4k+1), A085541 (PrimeZeta(3)), A002145 (primes 4k+3).

Programs

  • Mathematica
    b[x_] = (1 - 2^(-x))*(Zeta[x] / DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[(1/2)* NSum[MoebiusMu[2n+1]* Log[b[(2n+1)*3]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 21 2011, updated Mar 14 2018 *)
  • PARI
    A085992_upto(N=100)={localprec(N+3); digits((PrimeZeta43(3)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

Formula

Zeta_R(3) = Sum_{primes p == 3 (mod 4)} 1/p^3
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*3))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

Extensions

Edited by M. F. Hasler, Apr 25 2021

A343613 Decimal expansion of P_{3,2}(3) = Sum 1/p^3 over primes == 2 (mod 3).

Original entry on oeis.org

1, 3, 4, 1, 2, 5, 1, 7, 8, 9, 1, 5, 4, 6, 3, 5, 4, 0, 4, 2, 8, 5, 9, 9, 3, 2, 9, 9, 9, 9, 4, 3, 1, 1, 9, 8, 9, 9, 5, 8, 7, 9, 9, 1, 9, 7, 5, 2, 1, 6, 8, 3, 3, 7, 3, 7, 0, 5, 9, 9, 1, 0, 6, 1, 5, 3, 8, 5, 3, 3, 4, 9, 9, 5, 6, 0, 4, 7, 9, 3, 7, 6, 7, 1, 5, 2, 8, 6, 5, 3, 7, 4, 0, 4, 0, 3, 4, 4, 4, 3, 3, 6, 7, 8, 6
Offset: 0

Views

Author

M. F. Hasler, Apr 22 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.134125178915463540428599329999431198995879919752168337370599106153853349956...
		

Crossrefs

Cf. A003627 (primes 3k-1), A085541 (PrimeZeta(3)), A021031 (1/27).
Cf. A175645 (same for p==1 (mod 3)), A086033 (for primes 4k+1), A085992 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).

Programs

  • PARI
    s=0;forprimestep(p=2,1e8,3,s+=1./p^3);s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
    
  • PARI
    A343613_upto(N=100)={localprec(N+5); digits((PrimeZeta32(3)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32.

Formula

P_{3,2}(3) = P(3) - 1/3^3 - P_{3,1}(3) = A085541 - A021031 - A175645.
Showing 1-5 of 5 results.