cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085966 Decimal expansion of the prime zeta function at 6.

Original entry on oeis.org

0, 1, 7, 0, 7, 0, 0, 8, 6, 8, 5, 0, 6, 3, 6, 5, 1, 2, 9, 5, 4, 1, 3, 3, 6, 7, 3, 2, 6, 6, 0, 5, 9, 3, 9, 9, 2, 0, 9, 5, 8, 5, 9, 4, 1, 8, 7, 4, 5, 4, 4, 2, 4, 4, 7, 3, 3, 1, 6, 3, 3, 6, 8, 8, 3, 6, 9, 6, 9, 7, 3, 6, 7, 4, 7, 1, 7, 2, 4, 3, 6, 6, 7, 1, 8, 6, 0, 3, 5, 0, 0, 7, 8, 1, 8, 0, 6, 2, 3, 0, 2, 8, 8, 2, 3
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017

Examples

			0.0170700868506365129541...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4), A085965 (at 5), this sequence (at 6), A085967 (at 7) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    [0]cat Reverse(IntegerToSequence(Floor(PrimeZeta(6,57)*10^105)));
    // Jason Kimberley, Dec 30 2016
    
  • Mathematica
    s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[6*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[ PrimeZetaP[ 6], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
  • PARI
    sumeulerrat(1/p,6) \\ Hugo Pfoertner, Feb 03 2020

Formula

P(6) = Sum_{p prime} 1/p^6 = Sum_{n>=1} mobius(n)*log(zeta(6*n))/n
Equals 1/2^6 + A085995 + A086036. - R. J. Mathar, Jul 14 2012
Equals Sum_{k>=1} 1/A030516(k). - Amiram Eldar, Jul 27 2020

A086036 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+1.

Original entry on oeis.org

0, 0, 0, 0, 6, 4, 2, 5, 0, 9, 6, 3, 6, 6, 4, 7, 7, 3, 7, 9, 1, 1, 0, 1, 8, 1, 9, 1, 3, 8, 0, 4, 3, 5, 7, 6, 5, 9, 8, 9, 8, 4, 5, 4, 5, 5, 4, 6, 9, 7, 8, 8, 1, 5, 0, 5, 2, 8, 9, 8, 5, 6, 6, 2, 5, 8, 4, 3, 8, 9, 8, 4, 5, 2, 0, 0, 9, 7, 7, 4, 5, 3, 2, 3, 9, 4, 4, 7, 4, 5, 8, 2, 6, 4, 7, 0, 4, 5, 7, 0, 1, 1, 9, 4, 4
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			6.4250963664773791101819138043576598984545546978815052898566258438984520...*10^-5
		

Crossrefs

Cf. A085995 (same for primes 4k+3), A343626 (for primes 3k+1), A343616 (for primes 3k+2), A086032, ..., A086039 (for 1/p^2, ..., 1/p^9), A085966 (PrimeZeta(6)), A002144 (primes of the form 4k+1).

Programs

  • Mathematica
    digits = 1003; m0 = 50; dm = 10; dd = 10; Clear[f, g];
    b[s_] := (1 + 2^-s)^-1 DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits + dd]&;
    f[n_] := f[n] = (1/2) MoebiusMu[2n + 1]*Log[b[(2n + 1)*6]]/(2n + 1);
    g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm];
    While[Abs[g[m] - g[m - dm]] < 10^(-digits - dd), Print[m]; m += dm];
    Join[{0, 0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
  • PARI
    A086036_upto(N=100)={localprec(N+3); digits((PrimeZeta41(6)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021

Formula

Zeta_Q(6) = Sum_{p in A002144} 1/p^6 where A002144 = {primes p == 1 mod 4};
= Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(6m)*zeta(6m)/zeta(12m)/(1+2^(-6m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021

Extensions

Edited by M. F. Hasler, Apr 26 2021

A343616 Decimal expansion of P_{3,2}(6) = Sum 1/p^6 over primes == 2 (mod 3).

Original entry on oeis.org

0, 1, 5, 6, 8, 9, 6, 1, 4, 7, 2, 7, 1, 3, 0, 4, 6, 1, 5, 6, 3, 5, 2, 7, 6, 6, 6, 1, 5, 2, 2, 0, 9, 0, 9, 1, 8, 1, 4, 2, 0, 8, 6, 7, 5, 5, 5, 3, 0, 7, 7, 7, 6, 3, 3, 6, 6, 1, 5, 3, 1, 8, 8, 6, 7, 6, 4, 5, 7, 2, 3, 3, 5, 6, 2, 3, 7, 3, 0, 4, 0, 7, 0, 0, 5, 5, 2, 4, 2, 2, 1, 0, 3, 3, 6, 8, 4, 3, 5, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 25 2021

Keywords

Comments

The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.

Examples

			0.015689614727130461563527666152209091814208675553077763366153188676457...
		

Crossrefs

Cf. A003627 (primes 3k-1), A001014 (n^6), A085966 (PrimeZeta(6)), A021733 (1/3^6).
Cf. A343612 - A343619 (P_{3,2}(s): analog for 1/p^s, s = 2 .. 9).
Cf. A343626 (for primes 3k+1), A086036 (for primes 4k+1), A085995 (for primes 4k+3).

Programs

  • PARI
    A343616_upto(N=100)={localprec(N+5); digits((PrimeZeta32(6)+1)\.1^N)[^1]} \\ see A343612 for the function PrimeZeta32

Formula

P_{3,2}(6) = Sum_{p in A003627} 1/p^6 = P(6) - 1/3^6 - P_{3,1}(6).
Showing 1-3 of 3 results.