A085999 For p = prime(n), a(n) is the smallest base-2 pseudoprime N (that is, 2^(N-1) = 1 mod N) such that p divides N.
561, 645, 1729, 341, 1105, 561, 1387, 2047, 2465, 341, 2701, 6601, 645, 4371, 8321, 13747, 29341, 8911, 19951, 1387, 30889, 88561, 2047, 18721, 60701, 31621, 680627, 4033, 3277, 1905, 357761, 74665, 1419607, 88357, 4681, 8321, 422659, 83333
Offset: 2
Examples
a(11) = 341 because prime(11) = 31 and 341 is the first pseudoprime divisible by 31.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10001
- R. G. E. Pinch, Pseudoprimes and their factors (FTP).
- Eric Weisstein's World of Mathematics, Pseudoprime.
Programs
-
Mathematica
Table[p=Prime[n]; m=MultiplicativeOrder[4, p]; k=1; While[psp=p(1+2*m*k); PowerMod[2, psp-1, psp]!=1, k++ ]; psp, {n, 2, 100}]
Comments