A086000 For p = prime(n), a(n) is the smallest N such that pN is a base-2 pseudoprime (that is, 2^(pN-1) = 1 mod pN).
187, 129, 247, 31, 85, 33, 73, 89, 85, 11, 73, 161, 15, 93, 157, 233, 481, 133, 281, 19, 391, 1067, 23, 193, 601, 307, 6361, 37, 29, 15, 2731, 545, 10213, 593, 31, 53, 2593, 499, 1205, 141155, 1261, 2281, 97, 3333, 1387, 1891, 1777, 3391, 381, 59, 20231, 97
Offset: 2
Examples
a(2) = 187 because prime(2) = 3 and N=187 is the smallest number such that 3N is a 2-pseudoprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10001
- R. G. E. Pinch, Pseudoprimes and their factors (FTP).
- Eric Weisstein's World of Mathematics, Pseudoprime.
Programs
-
Mathematica
Table[p=Prime[n]; m=MultiplicativeOrder[4, p]; k=1; While[psp=p(1+2*m*k); PowerMod[2, psp-1, psp]!=1, k++ ]; 1+2*m*k, {n, 2, 100}]
Comments