cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086004 Primes which remain prime after one and after two and after three applications of the rotate-and-add operation of A086002.

Original entry on oeis.org

12917, 12919, 18911, 18913, 22907, 24907, 26903, 28901, 1088063, 1288043, 1408031, 1428029, 1528019, 100083679, 100280419, 100283849, 100483847, 100692793, 100880413, 101080159, 101283839, 101683093, 101683663, 102080149
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Comments

These are the primes of A086003 which in addition remain prime after one additional, third application of the rotate-and-add operation.
Note: Have not yet found any 4-Rotation Cycle Primes.
Conjecture 1: Rotation and addition of primes with even numbers of digits never yields a prime.
Conjecture 2: There are no 5-Rotation Cycle Primes.
[Conjecture 1 is true because rotation for even numbers of the form 10^k*a+b yields 10^k*b+a, so rotation-and-add yields (10^k+1)*(a+b), which obviously contains a divisor A000533. RJM, Sep 17 2009]
4-Rotation Cycle Primes exist and are listed in A261458. - Chai Wah Wu, Aug 20 2015

Examples

			a(1)=12917 is in the sequence because 2-fold rotate-and-add yields the prime 60659 as shown in A086003, and the third application yields 60659+59660 = 120319 which still is prime.
		

Crossrefs

Programs

  • Mathematica
    rot[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];If[OddQ[ len],FromDigits[ Join[ Take[idn,-Floor[len/2]],{idn[[(len+1)/2]]},Take[idn,Floor[len/2]]]],FromDigits[ Join[ Take[idn,-len/2],Take[idn,len/2]]]]]; a3rotQ[n_]:=AllTrue[Rest[NestList[ #+rot[ #]&,n,3]],PrimeQ]; Select[Prime[Range[5880000]],a3rotQ] (* Harvey P. Dale, Apr 26 2022 *)

Formula

{p in A086003: p+rot(p) in A086003}.

Extensions

Condensed by R. J. Mathar, Sep 17 2009