cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086032 Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+1.

Original entry on oeis.org

0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Examples

			0.053813763574057670280678287341536562285675501495085532293911422295866827...
		

Crossrefs

Cf. A085991 (same for primes 4k+3), A175644 (for primes 3k+1), A343612 (for primes 3k+2), A086033 - A086039 (for 1/p^3, ..., 1/p^9), A085548 (PrimeZeta(2)), A002144 (primes 4k+1).

Programs

  • Mathematica
    digits = 1004; nmax0 = 100; dnmax = 10;
    Clear[PrimeZeta41];
    f[s_] := (1 + 2^-s)^-1*DirichletBeta[s] Zeta[s]/Zeta[2s];
    PrimeZeta41[s_, nmax_] := PrimeZeta41[s, nmax] = (1/2) Sum[MoebiusMu[2n + 1]* Log[f[(2n + 1)*2]]/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
    PrimeZeta41[2, nmax = nmax0];
    PrimeZeta41[2, nmax += dnmax];
    While[Abs[PrimeZeta41[2, nmax] - PrimeZeta41[2, nmax - dnmax]] > 10^-(digits + 5), Print["nmax = ", nmax]; nmax += dnmax];
    PrimeZeta41[2] = PrimeZeta41[2, nmax];
    Join[{0}, RealDigits[PrimeZeta41[2], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 06 2021 *)
  • PARI
    PrimeZeta41(s)={suminf(n=0, my(t=s+s*n*2); moebius(2*n+1)*log(zeta(t)/zeta(2*t)*(zetahurwitz(t,1/4)-zetahurwitz(t,3/4))/(4^t+2^t))/(4*n+2))}
    A086032_upto(N=100)={localprec(N+3);digits((PrimeZeta41(2)+1)\.1^N)[^1]} \\  M. F. Hasler, Apr 24 2021

Formula

Zeta_Q(2) = Sum_{p in A002144} 1/p^2, where A002144 = {primes p == 1 (mod 4)}.
Equals A085548 - 1/4 - A085991. - R. J. Mathar, Apr 03 2011
Zeta_Q(2) = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(2m)*zeta(2m)/zeta(4m)/(1 + 4^-m)) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021