A086035 Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+1.
0, 0, 0, 3, 2, 3, 4, 7, 4, 0, 3, 4, 2, 2, 1, 7, 9, 7, 5, 1, 8, 5, 1, 1, 9, 0, 8, 1, 8, 6, 0, 4, 1, 0, 8, 3, 9, 7, 7, 4, 4, 2, 7, 3, 3, 7, 0, 5, 7, 9, 9, 1, 4, 7, 3, 3, 6, 6, 9, 5, 9, 3, 3, 5, 7, 2, 6, 3, 0, 2, 6, 0, 1, 1, 4, 7, 7, 7, 0, 1, 1, 8, 6, 0, 4, 0, 0, 0, 5, 7, 1, 1, 7, 6, 8, 7, 2, 1, 8, 1, 6, 6, 8, 0, 1
Offset: 0
Examples
0.0003234740342217975185119081860410839774427337057991473366959335726302601...
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..1006
- X. Gourdon and P. Sebah, Some Constants from Number theory.
- R. J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=1, s=5), page 21.
- OEIS index to entries related to the (prime) zeta function.
Crossrefs
Programs
-
Mathematica
digits = 1004; m0 = 50; dm = 10; dd = 10; Clear[f, g]; b[s_] := (1+2^-s)^-1 * DirichletBeta[s] Zeta[s]/Zeta[2s] // N[#, digits+dd]&; f[n_] := f[n] = (1/2) MoebiusMu[2n + 1] Log[b[5(2n + 1)]]/(2n + 1); g[m_] := g[m] = Sum[f[n], {n, 0, m}]; g[m = m0]; g[m += dm]; While[Abs[g[m] - g[m-dm]] < 10^(-digits-dd), Print[m]; m += dm]; Join[{0, 0, 0}, RealDigits[g[m], 10, digits][[1]]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated May 08 2021 *)
-
PARI
A086035_upto(N=100)={localprec(N+3); digits((PrimeZeta41(5)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - M. F. Hasler, Apr 26 2021
Formula
= Sum_{odd m > 0} mu(m)/2m *log(DirichletBeta(5m)*zeta(5m)/zeta(10m)/(1+2^(-5m))) [using Gourdon & Sebah, Theorem 11]. - M. F. Hasler, Apr 26 2021
Extensions
Edited by M. F. Hasler, Apr 26 2021