A086072 Number of 1's in decimal expansion of triangular number n(n+1)/2.
0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0
Offset: 0
Examples
tri(6)=21, so a(6)=1 and tri(1541)=1188111, so a(1541)=5.
Crossrefs
Programs
-
Mathematica
Table[DigitCount[(n(n+1))/2,10,1],{n,0,110}] (* Harvey P. Dale, Apr 24 2011 *) DigitCount[#,10,1]&/@Accumulate[Range[0,110]] (* Harvey P. Dale, Jun 25 2014 *)