A086085 Primes p such that p + floor(sqrt(p)) is prime.
2, 5, 19, 37, 41, 47, 71, 103, 151, 167, 197, 277, 331, 349, 401, 419, 487, 499, 577, 593, 607, 617, 619, 683, 701, 811, 829, 907, 911, 937, 941, 947, 953, 1031, 1061, 1451, 1493, 1511, 1627, 1657, 1669, 1789, 1831, 1847, 1949, 1973, 2161, 2309, 2333, 2341
Offset: 1
Keywords
Examples
a(3)=19 because 19 is prime and 19 + floor(sqrt(19)) = 19 + floor(4.358898944) = 19 + 4 = 23, which is prime.
Programs
-
Mathematica
f[n_]:=Floor[Sqrt[n]]+n;lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,p]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)
Extensions
More terms from R. J. Mathar, Oct 31 2008