A086093 a(n) = 3^n + 2*n*4^(n-1).
1, 5, 25, 123, 593, 2803, 13017, 59531, 268705, 1199331, 5301929, 23245819, 101194737, 437801939, 1883831161, 8067412587, 34402785089, 146158028227, 618862711113, 2612502377435, 10998603062161, 46189948719795, 193545427548185, 809334701221963, 3377982150064353
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-40,48).
Programs
-
Mathematica
CoefficientList[Series[(1 - 6*x + 10*x^2)/((1 - 3*x)*(1 - 4*x)^2), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2022 *)
Formula
G.f.: (1-6*x+10*x^2)/((1-3*x)*(1-4*x)^2).
a(n) = 11*a(n-1) - 40*a(n-2) + 48*a(n-3). - Wesley Ivan Hurt, Oct 30 2022
Extensions
More terms from Wesley Ivan Hurt, Oct 30 2022
Comments