cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086134 Smallest prime factor of arithmetic derivative of n or a(n)=0 if no such prime exists.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 5, 0, 2, 2, 7, 0, 2, 0, 3, 2, 2, 0, 3, 0, 2, 2, 13, 0, 2, 2, 3, 3, 2, 0, 31, 0, 2, 2, 19, 2, 2, 0, 3, 2, 2, 0, 41, 0, 2, 3, 5, 0, 2, 2, 3, 2, 2, 0, 3, 2, 2, 2, 31, 0, 2, 0, 3, 3, 2, 2, 61, 0, 2, 2, 59, 0, 2, 0, 3, 5, 2, 2, 71, 0, 2, 2, 43, 0, 2, 2, 3, 2, 2, 0, 3, 2, 2, 2, 7, 2, 2, 0, 7, 3, 2, 0, 7
Offset: 0

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Crossrefs

Cf. A003415.

Programs

  • Maple
    with(numtheory):
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    a:= n-> (f-> `if`(f<2, 0, min(factorset(f)[])))(d(n)):
    seq(a(n), n=0..105);  # Alois P. Heinz, Jun 08 2015
  • Mathematica
    d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}];
    a[n_] := Function[f, If[f<2, 0, Min[FactorInteger[f][[All, 1]]]]][d[n]]; a[0] = 0;
    Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Mar 23 2017, after Alois P. Heinz *)
  • Python
    from sympy import primefactors, factorint
    def A086134(n): return 0 if n <= 1 else min(primefactors(m)) if (m:=sum((n*e//p for p,e in factorint(n).items()))) > 1 else 0 # Chai Wah Wu, Nov 04 2022