A086134 Smallest prime factor of arithmetic derivative of n or a(n)=0 if no such prime exists.
0, 0, 0, 0, 2, 0, 5, 0, 2, 2, 7, 0, 2, 0, 3, 2, 2, 0, 3, 0, 2, 2, 13, 0, 2, 2, 3, 3, 2, 0, 31, 0, 2, 2, 19, 2, 2, 0, 3, 2, 2, 0, 41, 0, 2, 3, 5, 0, 2, 2, 3, 2, 2, 0, 3, 2, 2, 2, 31, 0, 2, 0, 3, 3, 2, 2, 61, 0, 2, 2, 59, 0, 2, 0, 3, 5, 2, 2, 71, 0, 2, 2, 43, 0, 2, 2, 3, 2, 2, 0, 3, 2, 2, 2, 7, 2, 2, 0, 7, 3, 2, 0, 7
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A003415.
Programs
-
Maple
with(numtheory): d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]): a:= n-> (f-> `if`(f<2, 0, min(factorset(f)[])))(d(n)): seq(a(n), n=0..105); # Alois P. Heinz, Jun 08 2015
-
Mathematica
d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; a[n_] := Function[f, If[f<2, 0, Min[FactorInteger[f][[All, 1]]]]][d[n]]; a[0] = 0; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Mar 23 2017, after Alois P. Heinz *)
-
Python
from sympy import primefactors, factorint def A086134(n): return 0 if n <= 1 else min(primefactors(m)) if (m:=sum((n*e//p for p,e in factorint(n).items()))) > 1 else 0 # Chai Wah Wu, Nov 04 2022