cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086139 Let p = A046133(n), that is, let p run through the list of primes such that p+12 is also prime (A046133); a(n) = number of primes in the interval p + 1 through p + 11 inclusive.

Original entry on oeis.org

3, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 1, 2, 1, 2, 0, 1, 3, 2, 0, 0, 0, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 29 2003

Keywords

Comments

From Michael De Vlieger, Jul 30 2017: (Start)
a(n) = 0 for n = {24, 25, 44, 48, 53, 57, 62, 70, 82, 84, 89, 94, ...}.
a(n) = 1 for n = {9, 14, 18, 19, 20, 21, 22, 23, 28, 29, 30, 33, ...}.
a(n) = 2 for n = {4, 5, 6, 7, 8, 10, 11, 12, 13, 17, 26, 27, 31, ...}.
a(n) = 3 for n = {1, 2, 3, 15, 16, 96, 118, 183, 266, 570, 581, ...}.
(End)

Examples

			For n=1, we have p=5, the primes between 5 and 5+12=17 are 7,11,13, so a(1)=3.
		

Crossrefs

Programs

  • Maple
    a:=[]; b:=[];
    for n from 1 to 200 do if isprime(ithprime(n)+12) then
       a:=[op(a),ithprime(n)];
    c:=0;
    for i from 1 to 11 do if isprime(ithprime(n)+i) then c:=c+1; fi; od;
    b:=[op(b),c];
    fi;
    od:
    a; # A046133b; # this sequence
  • Mathematica
    cp[x_,y_] := Count[Table[PrimeQ[i],{i,x,y}],True]; d = 12; Do[s = Prime[n]; If[PrimeQ[s+d], Print[cp[s+1,s+d-1]]], {n, 1, 1000}]
    (* Second program: *)
    With[{d = 12}, DeleteCases[#, -1] &@ Table[Function[p, If[PrimeQ[p + d],
    Count[Range[p + 1, p + d - 1], _?PrimeQ], -1] ]@ Prime@ n, {n, 252}]]
    PrimePi[#+11]-PrimePi[#+1]&/@Select[Prime[Range[400]],PrimeQ[#+12]&] (* Harvey P. Dale, Jul 30 2022 *)

Extensions

Definition edited by N. J. A. Sloane, Aug 05 2017 following analysis by Michael De Vlieger, Jul 30 2017