cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086098 Sum of rank(M) over all n X n matrices over GF(2).

Original entry on oeis.org

1, 21, 1141, 208965, 139889701, 354550756581, 3464730268306021, 131934922593867875685, 19707939574875773323508581, 11599530748705611712884878698341, 26983642577843418550426409405086580581, 248652621703069011230281370429818425958461285
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 24 2003

Keywords

Comments

a(n) <= A086875(n).

Crossrefs

Programs

  • PARI
    a(n) = {my(q=2); sum(r=1, n, r*prod(j=0, r-1, (q^n-q^j)^2/(q^r-q^j)))} \\ Andrew Howroyd, Jul 08 2018

Formula

For prime power q the number of rank-r n X n matrices over GF(q) is F(r, n) = product j=0..(r-1) (q^n-q^j)^2/(q^r-q^j) so a(n) = sum r=1..n r*product j=0..(r-1) (q^n-q^j)^2/(q^r-q^j) . In this case q=2.
a(n) = Sum_{r=1..n} r*Product_{j=0, r-1} (2^n - 2^j)^2/(2^r - 2^j). - Andrew Howroyd, Jul 08 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 08 2018

A086207 Sum of rank(M) over all n X n matrices over GF(4).

Original entry on oeis.org

3, 435, 704403, 15823018515, 5272966965638163, 26837910294320000900115, 2117959516569888987677094001683, 2614420107255201240346554326291784252435, 50761384915342243255034590495173254359633089772563, 15560120110421752320376568335982564883819269596340271934585875
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 27 2003

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {my(q=4); sum(r=1, n, r*prod(j=0, r-1, (q^n-q^j)^2/(q^r-q^j)))}

Formula

a(n) = Sum_{r=1..n} r*Product_{j=0..r-1} (q^n-q^j)^2/(q^r-q^j) with q=4.

Extensions

a(6)-a(10) from Andrew Howroyd, Jul 08 2018
Showing 1-2 of 2 results.