A086211 Triangle related to Bell numbers; T(n,k) read by rows, n>=0, 0<=k<=n: T(n,k) = k*T(n-1,k) + Sum(0<=j, T(n-1,k-1+j)); T(0,0)=1, T(0,k)=0 if k>0.
1, 1, 1, 2, 3, 1, 6, 9, 6, 1, 22, 31, 28, 10, 1, 92, 123, 126, 69, 15, 1, 426, 549, 586, 418, 145, 21, 1, 2146, 2695, 2892, 2425, 1165, 272, 28, 1, 11624, 14319, 15262, 14058, 8551, 2826, 469, 36, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 3, 1; 6, 9, 6, 1; 22, 31, 28, 10, 1; 92, 123, 126, 69, 15, 1; 426, 549, 586, 418, 145, 21, 1; 2146, 2695, 2892, 2425, 1165, 272, 28, 1; 11624, 14319, 15262, 14058, 8551, 2826, 469, 36, 1 ; ...
Links
- David Callan, A combinatorial interpretation for this sequence
- Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Cf. A000110.
Formula
Sum_{k=0..n} T(n, k) = A074664(n+2). - Philippe Deléham, May 10 2005
Comments