A086233 Decimal expansion of the probability that a random walk on the 5-d simple cubic (hypercubic) lattice returns to the origin.
1, 3, 5, 1, 7, 8, 6, 0, 9, 8, 2, 0, 6, 5, 5, 2, 9, 1, 0, 4, 7, 2, 6, 2, 4, 2, 9, 5, 6, 9, 3, 1, 5, 8, 7, 9, 6, 9, 1, 6, 5, 6, 4, 4, 4, 1, 8, 9, 9, 9, 6, 5, 8, 1, 8, 0, 4, 7, 3, 2, 9, 0, 3, 2, 5, 3, 4, 0, 9, 2, 6, 9, 4, 5, 8, 9, 9, 7, 3, 9, 1, 4, 9, 1, 0, 6, 1
Offset: 0
Examples
0.1351786098206552...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 323.
Links
- Marc Mezzarobba, Table of n, a(n) for n = 0..9999
- F. Bornemann, Biasing for a Fair Return, in: F. Bornemann, D. Laurie, S. Wagon, J. Waldvogel, The SIAM 100-digit Challenge: A Study in High-accuracy Numerical Computing, SIAM, 2004. See Table 6.1 at p. 146.
- Eric Weisstein's World of Mathematics, Polya's Random Walk Constants.
Formula
Equals 1-1/A242813. - Andrey Zabolotskiy, Dec 28 2018
Extensions
More terms from Andrey Zabolotskiy, Dec 28 2018 based on A242813