cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086239 Decimal expansion of Sum_{k>=2} c(k)/prime(k), where c(k) = -1 if p == 1 (mod 4) and c(k) = +1 if p == 3 (mod 4).

Original entry on oeis.org

3, 3, 4, 9, 8, 1, 3, 2, 5, 2, 9, 9, 9, 9, 3, 1, 8, 1, 0, 6, 3, 3, 1, 7, 1, 2, 1, 4, 8, 7, 5, 4, 3, 5, 7, 3, 7, 7, 9, 9, 7, 5, 3, 8, 0, 7, 5, 5, 0, 7, 7, 0, 4, 8, 1, 0, 8, 0, 2, 0, 5, 7, 8, 8, 4, 5, 2, 2, 2, 8, 4, 3, 2, 7, 1, 8, 8, 4, 1, 1, 0, 6, 2, 4, 8, 9, 9, 6, 3, 1, 0, 2, 9, 8, 0, 3, 3, 4, 5, 3, 9, 2, 4, 8, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jul 13 2003

Keywords

Comments

This is Sum_{p prime, p>=3} -(-4/p)/p where (-4/.) is the Legendre symbol and is equal to - L(1,(-4/.)) plus an absolutely convergent sum (and therefore converges).

Examples

			0.33498132529999...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Log[2]/2 + Sum[Log[2^(4*n)*(2^(2*n + 1) + 1)*(2^(2*n + 3) - 4)*(Zeta[4*n + 2] / (Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4])^2)] * MoebiusMu[2*n + 1]/(4*n + 2), {n, 1, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jun 28 2020 *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[4, 2, 1], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)
  • PARI
    /* the given number of primes and terms in the sum yield over 105 correct digits */ P=vector(15, k, (2-prime(k)%4)/prime(k)); -sum(s=1,60, moebius(s)/s*log( prod( k=2, #P, 1-P[k]^s, if(s%2, if(s==1, Pi/4, sumalt(k=0,(-1)^k/(2*k+1)^s)),zeta(s)*(1-1/2^s) ))), sum(k=2,#P, P[k], .)) \\ M. F. Hasler, Oct 29 2009

Formula

Equals A368646 - A368645. - Amiram Eldar, Jan 02 2024

Extensions

Edited by N. J. A. Sloane, Jun 10 2008
Corrected a(9) and example, added a(10)-a(104) following Broadhurst and Cohen. - M. F. Hasler, Oct 29 2009