cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A368644 Decimal expansion of the Mertens constant M(3,2) arising in the formula for the sum of reciprocals of primes p == 2 (mod 3).

Original entry on oeis.org

2, 8, 5, 0, 5, 4, 3, 5, 9, 0, 2, 3, 7, 5, 2, 5, 7, 9, 5, 4, 1, 7, 4, 3, 0, 7, 2, 4, 9, 8, 5, 4, 8, 4, 2, 1, 1, 9, 6, 8, 2, 2, 1, 7, 9, 4, 7, 1, 8, 7, 7, 7, 6, 3, 8, 8, 3, 4, 5, 0, 8, 6, 2, 8, 6, 1, 6, 6, 2, 2, 3, 0, 1, 2, 7, 3, 8, 6, 0, 5, 4, 9, 8, 9, 4, 9, 1, 7, 2, 9, 0, 2, 3, 2, 5, 9, 9, 4, 5, 7, 7, 8, 4, 5, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 02 2024

Keywords

Comments

Data were taken from Languasco and Zaccagnini's web site.

Examples

			0.28505435902375257954174307249854842119682217947187...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 204.

Crossrefs

Formula

Equals A086241 - A161529.
Equals lim_{x->oo} (Sum_{primes p == 2 (mod 3), p <= x} 1/p - log(log(x))/2).
Equals gamma/2 - log(sqrt(Pi/3)/(2*K_3)) + Sum_{prime p == 2 (mod 3)} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620) and K_3 = A301429.

A175642 Decimal expansion of the negated Dirichlet Prime L-function of the real non-principal character mod 5 at 1.

Original entry on oeis.org

1, 0, 0, 7, 9, 9, 6, 5, 4, 7, 9, 3, 9, 8, 6, 1, 1, 7, 2, 2, 6, 1, 6, 6, 6, 0, 7, 5, 5, 1, 2, 6, 7, 8, 5, 6, 6, 9, 9, 9, 0, 3, 1, 9, 5, 6, 6, 4, 9, 3, 2, 7, 0, 9, 7, 1, 6, 3, 7, 4, 5, 5, 3, 9, 5, 0, 0, 1, 4, 9, 4, 5, 8, 8, 5, 3, 9, 3, 2, 4, 8, 6, 4, 3, 3, 8, 6, 8, 1, 3, 3, 8, 6, 3, 3, 7, 3, 8, 2, 7, 2, 3, 7, 6, 2
Offset: 1

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The absolute value of S(1,chi_3) = sum_{primes p = A000040} A080891(p)/p = -1/2 -1/3 -1/7 +1/11 -1/13 -1/17 -1/23 +...

Examples

			S(1,chi_3) = -1.0079965479398611722616660755126785669990319566493...
		

Crossrefs

Cf. A086241 (mod 3), A086239 (mod 4), A175643 (mod 6).

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[5, 3, 1], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)

Extensions

More digits from Vaclav Kotesovec, Jan 22 2021

A175643 Decimal expansion of the negated Dirichlet Prime L-function of the real non-principal character mod 6 at 1.

Original entry on oeis.org

1, 4, 1, 9, 4, 4, 8, 3, 8, 5, 3, 3, 1, 9, 5, 7, 0, 8, 6, 6, 1, 3, 9, 2, 6, 3, 9, 7, 2, 1, 7, 3, 4, 3, 1, 6, 6, 7, 5, 4, 1, 1, 0, 4, 4, 0, 1, 5, 8, 8, 9, 6, 5, 4, 9, 0, 8, 1, 7, 0, 8, 4, 5, 1, 3, 1, 7, 3, 3, 2, 8, 2, 6, 9, 0, 7, 3, 7, 2, 3, 3, 5, 9, 8, 1, 7, 4, 1, 5, 9, 9, 4, 5, 6, 0, 6, 5, 7, 3, 8, 7, 5, 6, 1, 3, 8
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The absolute value of S(1,chi_2) = sum_{primes p = A000040} A134667(p)/p = -1/5 +1/7 -1/11+1/13 -1/17 +1/19 -1/23 +...

Examples

			S(1,chi_2) = -0.14194483853319570866139263972173431667541104401...
		

Crossrefs

Cf. A086241 (mod 3), A086239 (mod 4), A175642 (mod 5).

Programs

  • Mathematica
    Do[Print[N[-Log[4/3]/2 + Sum[Log[(Zeta[2*k + 1, 1/6] - Zeta[2*k + 1, 5/6])^2 / ((2^(4*k + 2) - 1) * (3^(4*k + 2) - 1) * Zeta[4*k + 2])] * MoebiusMu[2*k + 1]/(4*k + 2), {k, 1, m}], 120]], {m, 20, 200, 20}] (* Vaclav Kotesovec, Jun 27 2020 *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[6, 2, 1], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)

Extensions

More terms from Vaclav Kotesovec, Jun 27 2020

A368647 The number of distinct primes of the form 3*k+2 dividing n minus the number of distinct primes of the form 3*k+1 dividing n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, -1, 1, 0, 2, 1, 1, -1, 0, 1, 1, 1, 1, -1, 2, -1, 2, 1, 1, 1, 0, 0, 0, 1, 2, -1, 1, 1, 2, 0, 1, -1, 0, -1, 2, 1, 0, -1, 2, 1, 2, 1, 1, -1, 2, 1, 0, 1, 1, 2, 0, -1, 2, 1, 2, -1, 0, -1, 1, 0, 2, -1, 2, 1, 1, 1, 1, -1, 0, 1, 0, 0, 0, -1, 2, 0, 2
Offset: 1

Views

Author

Amiram Eldar, Jan 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 0, 1, -1, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(p = factor(n)[, 1]); sum(i = 1, #p, if(p[i]%3 == 0, 0, if(p[i]%3 == 1, -1, 1)));}

Formula

Additive with a(p^e) = 0 if p = 3, 1 if p == 2 (mod 3), and -1 if p == 1 (mod 3).
a(n) = A005090(n) - A005088(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A086241 = 0.641944... .

A175641 Decimal expansion of the negated Dirichlet Prime L-function of the non-principal character mod 3 at 2.

Original entry on oeis.org

2, 7, 4, 7, 0, 5, 2, 0, 8, 2, 8, 5, 5, 1, 8, 4, 8, 6, 2, 8, 9, 5, 7, 7, 8, 9, 8, 1, 6, 0, 8, 6, 0, 6, 3, 0, 0, 9, 9, 9, 4, 5, 0, 9, 8, 8, 2, 2, 2, 4, 7, 6, 4, 9, 4, 7, 8, 7, 3, 0, 6, 8, 6, 7, 4, 7, 5, 1, 7, 1, 8, 1, 7, 6, 9, 7, 1, 2, 9, 0, 5, 3, 5, 9, 9, 5, 8, 0, 8, 5, 2, 5, 4, 9, 6, 1, 6, 3, 0, 7, 9, 2, 2, 0, 5, 4
Offset: 0

Views

Author

R. J. Mathar, Aug 01 2010

Keywords

Comments

The absolute value of S(2,chi_2) = sum_{primes p = A000040} A102283(p)/p^2 = -1/2^2 -1/5^2 +1/7^2 -1/11^2 +1/13^2 -1/17^2 +...

Examples

			S(2,chi_2) = -0.274705208285518486289577898160860630099...
		

Crossrefs

Cf. A086241.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[3, 2, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020
Showing 1-5 of 5 results.