cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086267 a(n) = 3 + (H(n) mod 6) + floor(r) where H()=A005185() and r = (H(n) - 2*H(n+1) + H(n+2) - 4) / H(n).

Original entry on oeis.org

1, 0, 2, 5, 4, 5, 7, 7, 2, 2, 2, 4, 4, 4, 6, 5, 6, 7, 7, 2, 2, 3, 2, 6, 4, 4, 6, 6, 7, 6, 4, 7, 7, 4, 5, 3, 4, 6, 5, 6, 7, 7, 2, 2, 2, 3, 2, 5, 3, 3, 2, 7, 4, 2, 3, 6, 5, 2, 4, 4, 5, 4, 7, 6, 3, 4, 8, 5, 5, 7, 3, 4, 6, 5, 7, 5, 2, 6, 7, 3, 4, 3, 3, 6, 4, 5, 7, 7, 6, 2, 2, 2, 2, 3, 2, 7, 7, 6, 2, 5, 2, 2, 3, 4, 3
Offset: 1

Views

Author

Roger L. Bagula, Aug 28 2003

Keywords

Programs

  • Maple
    A005185 := proc(n)
            option remember;
            if n<=2 then
                    1
            elif n > procname(n-1) and n > procname(n-2) then
                    procname(n-procname(n-1))+procname(n-procname(n-2));
            end if;
    end proc:
    A086267 := proc(n)
            local H ;
            H := A005185(n) ;
            H-2*A005185(n+1)+A005185(n+2)-4;
            %/H ;
            3+ floor(%)+ (H mod 6) ;
    end proc:
    seq(A086267(n),n=1..50) ; # R. J. Mathar, Oct 10 2011
  • Mathematica
    Hofstadter[n_Integer?Positive] := Hofstadter[n] = Hofstadter[n - Hofstadter[n-1]] + Hofstadter[n - Hofstadter[n-2]] Hofstadter[1] = Hofstadter[2] = 1 Digits=502 a=Table[Hofstadter[n], {n, 1, Digits}]; b=Table[Floor[(a[[n]]-2*a[[n+1]]+a[[n+2]]-4)/a[[n]]]+Mod[a[[n]], 6]+3, {n, 1, Digits-2}] ListPlot[b]