A086279 Decimal expansion of 2nd Stieltjes constant gamma_2 (negated).
0, 0, 9, 6, 9, 0, 3, 6, 3, 1, 9, 2, 8, 7, 2, 3, 1, 8, 4, 8, 4, 5, 3, 0, 3, 8, 6, 0, 3, 5, 2, 1, 2, 5, 2, 9, 3, 5, 9, 0, 6, 5, 8, 0, 6, 1, 0, 1, 3, 4, 0, 7, 4, 9, 8, 8, 0, 7, 0, 1, 3, 6, 5, 4, 5, 1, 8, 5, 0, 7, 5, 5, 3, 8, 2, 2, 8, 0, 4, 1, 4, 1, 7, 1, 9, 7, 8, 1, 9, 7, 3, 8, 1, 3, 7, 4, 5, 3, 7, 3, 1, 9
Offset: 0
Examples
-0.0096903...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 166.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Krzysztof Maślanka and Andrzej Koleżyński, The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm, arXiv preprint, arXiv:2210.04609 [math.NT], 2022.
- Eric Weisstein's World of Mathematics, Stieltjes Constants
- Wikipedia, Stieltjes constants
Crossrefs
Programs
-
Maple
evalf(gamma(2)); # R. J. Mathar, Feb 02 2011
-
Mathematica
Join[{0, 0}, RealDigits[N[-StieltjesGamma[2], 101]][[1]]] (* Jean-François Alcover, Oct 23 2012 *) N[4*EulerGamma^3 + Residue[Zeta[s]^4 / 2 - 2*EulerGamma*Zeta[s]^3, {s, 1}], 100] (* Vaclav Kotesovec, Jan 07 2017 *)
Formula
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_2 = -(Pi/3)*Integral_{0..infinity}(a^3-3*a*b^2)/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = (-Pi/(n+1))* Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018