A086365 n-th Bell number of type D: Number of symmetric partitions of {-n,...,n}\{0} such that none of the subsets is of the form {j,-j}.
1, 4, 15, 75, 428, 2781, 20093, 159340, 1372163, 12725447, 126238060, 1332071241, 14881206473, 175297058228, 2169832010759, 28136696433171, 381199970284620, 5383103100853189, 79065882217154085, 1205566492711167004, 19049651311462785947
Offset: 0
Examples
a(2)=4 because the relevant partitions of {-2,-1,1,2} are {-2|-1|1|2}, {-2,-1|1,2}, {-2,1|-1,2} and {-2,-1,1,2}.
Programs
-
PARI
x = 'x + O('x^16); egf = -1 + exp(-x+sum(j=1,2,(exp(j*x)-1)/j)) /* egf == +x +2*x^2 +5/2*x^3 +25/8*x^4 +... (i.e., for offset 1) */ Vec( serlaplace(egf) ) /* Joerg Arndt, Apr 29 2011 */
Formula
E.g.f. (for offset 1): -1 + exp(-x + Sum_{j=1..2} (exp(j*x)-1)/j). - Joerg Arndt, Apr 29 2011
Extensions
More terms from Joerg Arndt, Apr 29 2011
Definition shortened by M. F. Hasler, Oct 21 2012
Comments