cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324013 Number of self-complementary set partitions of {1, ..., n} with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 4, 3, 15, 16, 75, 89, 428, 571, 2781, 4060, 20093, 31697, 159340, 268791, 1372163, 2455804, 12725447, 24012697, 126238060, 249880687, 1332071241, 2754348360, 14881206473, 32029000641, 175297058228, 391548016475, 2169832010759
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}.

Examples

			The  a(3) = 1 through a(6) = 15 self-complementary set partitions with no singletons:
  {{123}}  {{1234}}    {{12345}}    {{123456}}
           {{12}{34}}  {{135}{24}}  {{123}{456}}
           {{13}{24}}  {{15}{234}}  {{124}{356}}
           {{14}{23}}               {{1256}{34}}
                                    {{1346}{25}}
                                    {{135}{246}}
                                    {{145}{236}}
                                    {{16}{2345}}
                                    {{12}{34}{56}}
                                    {{13}{25}{46}}
                                    {{14}{25}{36}}
                                    {{15}{26}{34}}
                                    {{16}{23}{45}}
                                    {{16}{24}{35}}
                                    {{16}{25}{34}}
		

Crossrefs

Cf. A000110, A000296, A080107 (self-complementary), A086365, A124323, A324012 (self-conjugate).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
    Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0]&]//Length,{n,0,10}]
  • PARI
    seq(n)={my(x=x+O(x*x^(n\2)), p=exp((exp(2*x)-3)/2-x+exp(x)), q=(exp(x)-1)*p); vector(n+1, n, my(c=(n-1)\2); c!*polcoef(if(n%2, p, q), c))} \\ Andrew Howroyd, Feb 16 2022

Formula

From Andrew Howroyd, Feb 16 2022: (Start)
a(2*n) = A086365(n-1) for n > 0.
a(2*n) = n!*[x^n] exp((exp(2*x) - 3)/2 - x + exp(x));
a(2*n+1) = n!*[x^n] (exp(x) - 1)*exp((exp(2*x) - 3)/2 - x + exp(x)).
(End)

Extensions

Terms a(13) and beyond from Andrew Howroyd, Feb 16 2022

A086364 Triangle read by rows: S_D(n,k) = `Type D' Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 2, 2, 9, 4, 2, 27, 36, 10, 2, 65, 195, 140, 26, 2, 143, 840, 1180, 540, 76, 2, 301, 3171, 7735, 6510, 2142, 232, 2, 619, 11060, 43659, 59920, 34692, 8624, 764, 2, 1257, 36707, 223566, 467691, 423612, 180852, 35856, 2620, 2, 2535, 117960, 1071350
Offset: 0

Views

Author

James East, Sep 04 2003

Keywords

Crossrefs

Cf. A085483, A086365 (row sums).

Formula

A partition of {-n, ..., -1, 1, ..., n} into nonempty subsets X_1, ..., X_r is called `symmetric' if for each i -X_i = X_j for some j. S_D(n, k) is the number of such symmetric partitions whose induced partition on {1, ..., n} involves k nonempty subsets and none of the X_i are of the form {j, -j}.
Showing 1-2 of 2 results.