cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086365 n-th Bell number of type D: Number of symmetric partitions of {-n,...,n}\{0} such that none of the subsets is of the form {j,-j}.

Original entry on oeis.org

1, 4, 15, 75, 428, 2781, 20093, 159340, 1372163, 12725447, 126238060, 1332071241, 14881206473, 175297058228, 2169832010759, 28136696433171, 381199970284620, 5383103100853189, 79065882217154085, 1205566492711167004, 19049651311462785947
Offset: 0

Views

Author

James East, Sep 04 2003

Keywords

Comments

A partition of {-n,...,-1,1,...,n} into nonempty subsets X_1,...,X_r is called `symmetric' if for each i -X_i = X_j for some j. a(n) is the number of such symmetric partitions such that none of the X_i are of the form {j,-j}.

Examples

			a(2)=4 because the relevant partitions of {-2,-1,1,2} are {-2|-1|1|2}, {-2,-1|1,2}, {-2,1|-1,2} and {-2,-1,1,2}.
		

Crossrefs

Programs

  • PARI
    x = 'x + O('x^16);
    egf = -1 + exp(-x+sum(j=1,2,(exp(j*x)-1)/j))
    /* egf == +x +2*x^2 +5/2*x^3 +25/8*x^4 +... (i.e., for offset 1) */
    Vec( serlaplace(egf) )
    /* Joerg Arndt, Apr 29 2011 */

Formula

E.g.f. (for offset 1): -1 + exp(-x + Sum_{j=1..2} (exp(j*x)-1)/j). - Joerg Arndt, Apr 29 2011

Extensions

More terms from Joerg Arndt, Apr 29 2011
Definition shortened by M. F. Hasler, Oct 21 2012

A135593 Number of n X n symmetric (0,1)-matrices with exactly n+1 entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

2, 9, 36, 140, 540, 2142, 8624, 35856, 152280, 666380, 2982672, 13716144, 64487696, 310693320, 1528801920, 7691652992, 39474925344, 206758346256, 1103332900160, 5999356762560, 33197323465152, 186925844947424, 1069977071943936
Offset: 2

Views

Author

Vladeta Jovovic, Feb 25 2008

Keywords

Crossrefs

Programs

  • Maple
    A135593 := proc(n) n!*coeftayl( x^2*(x+2)/2*exp(x*(x+2)/2),x=0,n) ; end: seq(A135593(n),n=2..40) ; # R. J. Mathar, Mar 31 2008
  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2*(x+2)/2*E^(x*(x+2)/2), {x, 0, 20}], x]* Range[0, 20]!]] (* Vaclav Kotesovec, Oct 20 2012 *)
    Flatten[{2,9,RecurrenceTable[{(n-5)*(n-2)*a[n]==(n-6)*n*a[n-1]+(n-4)*(n-1)*n*a[n-2],a[4]==36,a[5]==140},a,{n,4,20}]}] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

E.g.f.: x^2*(x+2)/2*exp(x*(x+2)/2).
Recurrence (for n>5): (n-5)*(n-2)*a(n) = (n-6)*n*a(n-1) + (n-4)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 1/4*sqrt(2)*exp(sqrt(n)-n/2-1/4)*n^(n/2+3/2). - Vaclav Kotesovec, Oct 20 2012

Extensions

More terms from R. J. Mathar, Mar 31 2008
Showing 1-2 of 2 results.