A086382 k divides F(k*n^2+1)-F(k+1) for 1<=k<=a(n) where F(k) is the k-th Fibonacci number.
2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 36, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
fibmod:= proc(k,m) uses LinearAlgebra:-Modular; local M; M:= Mod(m,<<0,1>|<1,1>>,integer[8]); MatrixPower(m,M,k)[1,2] end proc: f:= proc(n) local k; for k from 2 do if fibmod(k*n^2+1,k) <> fibmod(k+1,k) then return k-1 fi od end proc: map(f, [$2..100]); # Robert Israel, Oct 14 2024
-
PARI
a(n)=if(n<0,0,m=1; while((fibonacci(m*n^2+1)-fibonacci(m+1))%m==0,m++); m-1)
Formula
a(3n)=1; a( A047235(n))=2
Comments