cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086382 k divides F(k*n^2+1)-F(k+1) for 1<=k<=a(n) where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 16, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 36, 1, 10, 2, 1, 2, 10, 1, 12, 2, 1, 2, 10, 1, 10, 2, 1, 2, 12, 1, 12
Offset: 2

Views

Author

Benoit Cloitre, Sep 06 2003

Keywords

Comments

Record values: a(2) = 2, a(5) = 10, a(11) = 12, a(29) = 16, a(71) = 36, a(3079) = 58. The next record a(n), if any has n > 10^5. - Robert Israel, Oct 14 2024

Programs

  • Maple
    fibmod:= proc(k,m) uses LinearAlgebra:-Modular;
      local M;
      M:= Mod(m,<<0,1>|<1,1>>,integer[8]);
      MatrixPower(m,M,k)[1,2]
    end proc:
    f:= proc(n) local k;
       for k from 2 do if fibmod(k*n^2+1,k) <> fibmod(k+1,k) then return k-1 fi od
    end proc:
    map(f, [$2..100]); # Robert Israel, Oct 14 2024
  • PARI
    a(n)=if(n<0,0,m=1; while((fibonacci(m*n^2+1)-fibonacci(m+1))%m==0,m++); m-1)

Formula

a(3n)=1; a( A047235(n))=2