cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086395 Primes found among the numerators of the continued fraction rational approximations to sqrt(2).

Original entry on oeis.org

3, 7, 17, 41, 239, 577, 665857, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679
Offset: 1

Views

Author

Cino Hilliard, Sep 06 2003, Jul 30 2004, Oct 02 2005

Keywords

Comments

Or, starting with the fraction 1/1, the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and twice bottom to get the new top. Or, A001333(n) is prime.
The transformation of fractions is 1/1 -> 3/2 -> 7/5 -> 17/12 -> 41/29 -> ... A001333(n)/A000129(n). - R. J. Mathar, Aug 18 2008
Is this sequence infinite?

References

  • Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16.

Crossrefs

Programs

  • Mathematica
    Select[Numerator[Convergents[Sqrt[2],250]],PrimeQ] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    \Continued fraction rational approximation of numeric constants f. m=steps. cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,",")); ) }
    
  • PARI
    primenum(n,k,typ) = \yp = 1 num, 2 denom. print only prime num or denom. { local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v),print1(v","); ) ); print(); print(a/b+.) }

Formula

a(n) = A001333(A099088(n)). - R. J. Mathar, Feb 01 2024

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar