A086398 a(1)=1; a(n)=a(n-1)+2 if n is in the sequence; a(n)=a(n-1)+2 if n and (n-1) are not in the sequence; a(n)=a(n-1)+4 if n is not in the sequence but (n-1) is in the sequence.
1, 5, 7, 9, 11, 15, 17, 21, 23, 27, 29, 33, 35, 37, 39, 43, 45, 49, 51, 53, 55, 59, 61, 65, 67, 69, 71, 75, 77, 81, 83, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 113, 115, 119, 121, 125, 127, 129, 131, 135, 137, 141, 143, 147, 149, 153, 155, 157, 159, 163, 165, 169
Offset: 1
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 2, 3, 5, 9, 12.
Programs
-
Mathematica
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0, 0}}] &, {0}, 10]; (* A285301 *) Flatten[Position[s, 0]]; (* A285302 *) Flatten[Position[s, 1]]; (* A086398 *)
-
PARI
x=1; y=2; z=2; t=4; an[1]=x; for(n=2,100,an[n]=if(setsearch(Set(vector(n-1,i,a(i))),n),a(n-1)+y,if(setsearch(Set(vector(n-1,i,a(i))),n-1),a(n-1)+t,a(n-1)+z)))
Formula
a(n) = (1+sqrt(3))*n + O(1).
Comments