cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086405 Row T(n,3) of number array A086404.

Original entry on oeis.org

1, 4, 18, 84, 396, 1872, 8856, 41904, 198288, 938304, 4440096, 21010752, 99423936, 470479104, 2226331008, 10535111424, 49852682496, 235905426432, 1116316463616, 5282466223104, 24996898556928, 118286594002944
Offset: 0

Views

Author

Paul Barry, Jul 19 2003

Keywords

Comments

Binomial transform of A079935.
Number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. Here, we do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. - David Nacin, Feb 13 2012

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -6}, {1, 4}, 60] (* David Nacin, Feb 27 2012 *)
  • Python
    def a(n, adict={0:1, 1:4}):
        if n in adict:
            return adict[n]
        adict[n]=6*a(n-1)-6*a(n-2)
        return adict[n] # David Nacin, Feb 27 2012

Formula

G.f.: (1-2*x)/((1-(3-sqrt(3))*x)*(1-(3+sqrt(3))*x)) = (1-2*x)/(1-6*x+6*x^2);
a(n) = (3-sqrt(3))^n*(1/2 - 1/(2*sqrt(3))) + (3 + sqrt(3))^n*(1/2 + 1/(2*sqrt(3))).
E.g.f.: exp(3*x)*(cosh(sqrt(3)*x) + sinh(sqrt(3)*x)/sqrt(3)). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=1..floor(n/2)} C(n, 2k)*3^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = (((1+sqrt(3))*(3+sqrt(3))^n) - ((1-sqrt(3))*(3-sqrt(3))^n))/sqrt(12). - Al Hakanson (hawkuu(AT)gmail.com), Jun 10 2009
a(n) = Sum_{k=0..n} A117317(n,k)*2^k. - Philippe Deléham, Jan 28 2012
a(n) = 6*(a(n-1) - a(n-2)), a(0)=1, a(1)=4. - David Nacin, Feb 27 2012
G.f.: (1-2*x)/(1-6*x+6*x^2). - Colin Barker, Aug 04 2012