cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A206948 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0.

Original entry on oeis.org

0, 0, 0, 2, 19, 131, 791, 4446, 23913, 124892, 638878, 3218559, 16027375, 79093773, 387540260, 1887974063, 9154751912, 44221373872, 212931964415, 1022594028515, 4900116587043, 23437066655010, 111923110602497
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. Here, the term uniform used in the sense of Retakh, Serconek and Wilson.

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

a(n) = A086405(n) - A012781(n+1).
Cf. A206947 (unique maximal element added).
Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element).

Programs

  • Mathematica
    LinearRecurrence[{11, -40, 55, -30, 6}, {0, 0, 0, 2, 19, 131}, 23] (* David Nacin, Feb 29 2012; a(0) added by Georg Fischer, Apr 03 2019 *)
  • Python
    def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:19, 5:131}):
      if n in adict:
        return adict[n]
      adict[n]=11*a(n-1)-40*a(n-2)+55*a(n-3)-30*a(n-4)+6*a(n-5)
      return adict[n]
    for n in range(0,40):
      print(a(n))

Formula

a(n) = 11*a(n-1) - 40*a(n-2) + 55*a(n-3) - 30*a(n-4) + 6*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=19, a(5)=131.
G.f.: (x^3*(2 - 3*x + 2*x^2))/((1 - 6*x + 6*x^2)*(1 - 5*x + 4*x^2 - x^3)).

A110210 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 1, a(2) = -5.

Original entry on oeis.org

-1, 1, -5, 19, -89, 415, -1961, 9271, -43865, 207559, -982169, 4647655, -21992921, 104071591, -492472025, 2330402599, -11027583449, 52183085095, -246933009881, 1168499548711, -5529399232985, 26165398105639, -123815993235929, 585903570781735, -2772525465274841
Offset: 0

Views

Author

Creighton Dement, Jul 16 2005

Keywords

Crossrefs

Programs

  • Maple
    seriestolist(series((1+4*x)/((x-1)*(6*x^2+6*x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-5,0,6},{-1,1,-5},30] (* or *) CoefficientList[ Series[ (1+4*x)/(-1-5*x+6*x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2014 *)

Formula

Superseeker finds: a(n+1) - a(n) = ((-1)^n)*A094433(n+2); a(n+2) - a(n) = ((-1)^(n+1))*A086405(n+1).
G.f.: (4*x+1)/(6*x^3-5*x-1). - Harvey P. Dale, Nov 09 2014

A162557 a(n) = ((3+sqrt(3))*(4+sqrt(3))^n+(3-sqrt(3))*(4-sqrt(3))^n)/6.

Original entry on oeis.org

1, 5, 27, 151, 857, 4893, 28003, 160415, 919281, 5268853, 30200171, 173106279, 992248009, 5687602445, 32601595443, 186873931759, 1071170713313, 6140004593637, 35194817476027, 201738480090935, 1156375213539129, 6628401467130877, 37994333961038339, 217785452615605311
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Binomial transform of A086405.
Inverse binomial transform of A162558.
4th binomial transform of A108411.
2nd binomial transform of A079935. [R. J. Mathar, Jul 17 2009]
From J. Conrad, Aug 29 2016: (Start)
Partial sum of A136777.
Backward difference of Sum_{k=0..n} A027907(n+1,2k+2)*3^k.
(End)
String length in substitution system {0 -> 1001001, 1 -> 11011} at step n from initial string "1" (1 -> 11011 -> 110111101110010011101111011 -> ...). - Ilya Gutkovskiy, Aug 30 2016

Crossrefs

Cf. A108411 (powers of 3 repeated), A086405, A162558.
Cf. A162558. [R. J. Mathar, Jul 17 2009]

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/6: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009
    
  • Magma
    I:=[1,5]; [n le 2 select I[n]  else 8*Self(n-1)-13*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    seq(simplify(((3+sqrt(3))*(4+sqrt(3))^n+(3-sqrt(3))*(4-sqrt(3))^n)*1/6), n = 0..20); # Emeric Deutsch, Jul 14 2009
  • Mathematica
    Table[FullSimplify[((3 + #) (4 + #)^n + (3 - #) (4 - #)^n)/6 &@ Sqrt@ 3], {n, 0, 23}] (* Michael De Vlieger, Aug 30 2016 *)
    LinearRecurrence[{8,-13},{1,5},30] (* Harvey P. Dale, Oct 23 2020 *)

Formula

a(n) = 8*a(n-1)-13*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1-3*x)/(1-8*x+13*x^2).

Extensions

Edited, corrected and extended beyond a(5) by Klaus Brockhaus, Emeric Deutsch and R. J. Mathar, Jul 07 2009
More terms from Vincenzo Librandi, Aug 30 2016

A086404 Square array of numbers T(n,k) = ((1+sqrt(3))*(k+sqrt(3))^n-(1-sqrt(3))*(k-sqrt(3))^n)/(2*sqrt(3)), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 3, 1, 4, 11, 16, 9, 1, 5, 18, 41, 44, 9, 1, 6, 27, 84, 153, 120, 27, 1, 7, 38, 151, 396, 571, 328, 27, 1, 8, 51, 248, 857, 1872, 2131, 896, 81, 1, 9, 66, 381, 1644, 4893, 8856, 7953, 2448, 81, 1, 10, 83, 556, 2889, 10984, 28003, 41904, 29681
Offset: 0

Views

Author

Paul Barry, Jul 19 2003

Keywords

Examples

			Rows begin
  1, 1,  3,   3,   9, ...
  1, 2,  6,  16,  44, ...
  1, 3, 11,  41, 153, ...
  1, 4, 18,  84, 396, ...
  1, 5, 27, 151, 857, ...
		

Crossrefs

Rows include A002605, A079935, A086405. Main diagonal is A086406. Rows are successive binomial transforms of (1, 1, 3, 3, 9, 9, ...).
Cf. A086350.

A162558 a(n) = ((3+sqrt(3))*(5+sqrt(3))^n + (3-sqrt(3))*(5-sqrt(3))^n)/6.

Original entry on oeis.org

1, 6, 38, 248, 1644, 10984, 73672, 495072, 3329936, 22407776, 150819168, 1015220608, 6834184384, 46006990464, 309717848192, 2085024691712, 14036454256896, 94493999351296, 636137999861248, 4282512012883968
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Fifth binomial transform of A108411. Binomial transform of A162557. Inverse binomial transform of A162757.
2nd binomial transform of A086405. - R. J. Mathar, Jul 17 2009

Crossrefs

Cf. A108411 (powers of 3 repeated), A162557, A162757.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009

Formula

a(n) = 10*a(n-1) - 22*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1-4*x)/(1-10*x+22*x^2).
From R. J. Mathar, Jul 17 2009: (Start)
a(n) = 10*a(n-2) - 22*a(n-2).
G.f.: (1-4*x)/(1-10*x+22*x^2). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 13 2009
More terms from R. J. Mathar, Jul 17 2009

A208736 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level between 0 and 1.

Original entry on oeis.org

0, 0, 0, 1, 5, 22, 91, 361, 1392, 5265, 19653, 72694, 267179, 977593, 3565600, 12975457, 47142021, 171075606, 620303547, 2247803785, 8141857808, 29481675889, 106728951109, 386314552438, 1398132674955, 5059626441177, 18308871648576, 66249898660801
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Comments

Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, LinearRecurrence[{8, -21, 20, -5}, {0, 1, 5, 22}, 40]]
  • Python
    def a(n, d={0:0,1:0,2:0,3:1,4:5,5:22}):
        if n in d:
            return d[n]
        d[n]=8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4)
        return d[n]

Formula

a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), a(2) = 0, a(3) = 1, a(4) = 5, a(5) = 22.
G.f.: (x^3 - 3*x^4 + 3*x^5)/(1 - 8*x + 21*x^2 - 20*x^3 + 5*x^4); (x^3 * (1 - 3*x + 3*x^2))/((1 - 3*x + x^2)*(1 - 5*x + 5*x^2)) .
a(n) = A081567(n-2) - A001519(n-1).

A208737 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.

Original entry on oeis.org

0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Comments

Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
  • Python
    def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
        if n in d:
            return d[n]
        d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
        return d[n]

Formula

a(n) = 10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5), a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 7, a(5) = 37.
G.f: (x^3 - 3*x^4 + 3*x^5)/(1 - 10*x + 36*x^2 - 57*x^3 + 39*x^4 - 9*x^5); (x^3*(1 - 3*x + 3*x^2)) / ((1 - x) (1 - 3*x) (1 - 6*x + 9*x^2 - 3*x^3)).
a(n) = A124292(n) - A124302(n).
Showing 1-7 of 7 results.