cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208737 Number of nonisomorphic graded posets with 0 and 1 and non-uniform Hasse graph of rank n, with no 3-element antichain.

Original entry on oeis.org

0, 0, 0, 1, 7, 37, 175, 778, 3325, 13837, 56524, 227866, 909832, 3607294, 14227447, 55894252, 218937532, 855650749, 3338323915, 13007422705, 50631143323, 196928737582, 765495534433, 2974251390529, 11552064922624, 44856304154086
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Comments

Uniform used in the sense of Retakh, Serconek and Wilson. We use Stanley's definition of graded poset: all maximal chains have the same length n (which also implies all maximal elements have maximal rank.)

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{10, -36, 57, -39, 9}, {0, 0, 1, 7, 37}, 40]]
  • Python
    def a(n, d={0:0,1:0,2:0,3:1,4:7,5:37}):
        if n in d:
            return d[n]
        d[n]=10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5)
        return d[n]

Formula

a(n) = 10*a(n-1) - 36*a(n-2) + 57*a(n-3) - 39*a(n-4) + 9*a(n-5), a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 7, a(5) = 37.
G.f: (x^3 - 3*x^4 + 3*x^5)/(1 - 10*x + 36*x^2 - 57*x^3 + 39*x^4 - 9*x^5); (x^3*(1 - 3*x + 3*x^2)) / ((1 - x) (1 - 3*x) (1 - 6*x + 9*x^2 - 3*x^3)).
a(n) = A124292(n) - A124302(n).
Showing 1-1 of 1 results.