cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086456 Expansion of (1 + x + sqrt(1 - 6*x + x^2))/2 in powers of x.

Original entry on oeis.org

1, -1, -2, -6, -22, -90, -394, -1806, -8558, -41586, -206098, -1037718, -5293446, -27297738, -142078746, -745387038, -3937603038, -20927156706, -111818026018, -600318853926, -3236724317174, -17518619320890, -95149655201962
Offset: 0

Views

Author

Michael Somos, Jul 20 2003

Keywords

Comments

Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A003168(k)x^k).
G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = 2*x - (x + 1)*A(x) + A(x)^2.

Crossrefs

A minor variation of A006318. a(n)=-A006318(n-1), n>0. a(n)=A085403(n), n>1.
Cf. A001003.

Programs

  • Mathematica
    ReciprocalSeries[ser_, n_] := CoefficientList[ Series[1/ser, {x, 0, n}], x];
    LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)
    ReciprocalSeries[LittleSchroeder, 22] (* Peter Luschny, Jan 10 2019 *)
  • PARI
    a(n)=polcoeff((1+x+sqrt(1-6*x+x^2+x*O(x^n)))/2,n)

Formula

G.f.: (1 + x + sqrt(1 - 6*x + x^2))/2. (= 1/g.f. A001003)
D-finite with recurrence: n*a(n) + 3*(-2*n + 3)*a(n-1) + (n-3)*a(n-2) = 0. - R. J. Mathar, Jul 23 2017