A086498 Rearrangement of primes such that every (2n)-th partial sum is a prime. Every (2n+1)-st term is the smallest prime which has not been included earlier.
2, 3, 5, 7, 11, 13, 17, 31, 19, 23, 29, 37, 41, 43, 47, 61, 53, 67, 59, 73, 71, 97, 79, 83, 89, 103, 101, 109, 107, 127, 113, 151, 131, 139, 137, 163, 149, 199, 157, 173, 167, 181, 179, 271, 191, 229, 193, 257, 197, 277, 211, 239, 223, 263, 227, 313, 233, 241, 251
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # to get all terms before the first term > Prime(N). Primes:= [seq(ithprime(i),i=2..N)]: nP:= N-1: S:= 2: R:= 2: do found:= false; for j from 1 to nP do if isprime(S+Primes[j]) then R:= R, Primes[j]; S:= S + Primes[j]; Primes:= subsop(j=NULL, Primes); nP:= nP-1; found:= true; break fi od; if not found or nP = 0 then break fi; R:= R, Primes[1]; S:= S + Primes[1]; Primes:= Primes[2..-1]; nP:= nP-1; od: R; # Robert Israel, Aug 04 2020
Extensions
More terms from Ray Chandler, Sep 17 2003