A086510 Number of n X n real (0,1)-matrices with all eigenvalues >= 0.
1, 2, 13, 261, 15418, 2566333
Offset: 0
Examples
a(2)=13 because only 3 of the 16 possible matrices have eigenvalues < 0: . 0 1 1 0 with eigenvalues {1,-1} and 1 1 1 0 . 0 1 1 1 both with eigenvalues {1.61803..(Golden ratio),-0.61803...}
Links
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], 2003.
- B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
- Index entries for sequences related to binary matrices
Programs
-
Mathematica
a[0] = 1; a[n_] := Module[{M, iter, cnt = 0}, M = Table[a[i, j], {i, 1, n}, {j, 1, n}]; iter = Thread[{Flatten[M], 0, 1}]; Do[If[AllTrue[Eigenvalues[ M], NonNegative], cnt++], Evaluate[Sequence @@ iter]]; cnt]; Do[Print[n, " ", a[n]], {n, 0, 5}] (* Jean-François Alcover, Dec 09 2018 *)
Extensions
a(5) from Hugo Pfoertner, Sep 26 2017