A086550 Smallest k such that tau(k) - tau(k-1) = n, where tau(k) = number of divisors of k, or 0 if no such number exists.
3, 2, 6, 50, 12, 36, 24, 400, 48, 1850, 60, 144, 120, 1600, 168, 576, 180, 1296, 240, 4356, 630, 2304, 360, 900, 960, 9216, 1008, 40000, 720, 20736, 840, 5184, 1800, 46656, 1260, 36864, 1680, 7056, 3024, 986050, 2880, 3600, 6480, 82944, 2520, 193600, 3360
Offset: 0
Keywords
Examples
a(3) = 50 as tau(50) - tau(49) = 6 - 3 = 3.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..1000 (first 500 terms from Donovan Johnson)
Crossrefs
Cf. A285457.
Programs
-
Mathematica
With[{tau=Partition[DivisorSigma[0,Range[10^6]],2,1]},Flatten[ Table[ Position[ #[[2]]-#[[1]]&/@tau,n,1,1],{n,0,50}]]]+1 (* Harvey P. Dale, Aug 20 2017 *)
-
PARI
/* finds first 100 terms */ nn=vector(100); nd1=1; for(k=2, 24285184, nd2=numdiv(k); d=nd2-nd1; if(d>0, if(d<=100, if(nn[d]==0, nn[d]=k))); nd1=nd2); for(n=1, 100, write("b086550.txt", n " " nn[n])) /* Donovan Johnson, Sep 25 2013 */
Extensions
Corrected and extended by David Wasserman, Mar 24 2005
Offset changed to 0, and a(0) added by Giovanni Resta, Apr 28 2017
Comments