cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086569 Product of the nonzero eigenvalues of the circulant matrix whose rows are formed by successively rotating a vector of binomial coefficients right. Generalization of A048954.

Original entry on oeis.org

1, -3, 28, -375, 3751, -49392, 6835648, -1343091375, 364668913756, -210736858987743, 101832157445630503, -67043511427995648000, 487627751563388801409591, -4875797582053878382039400448, 58623274842128064372315087290368
Offset: 1

Views

Author

T. D. Noe, Jul 21 2003

Keywords

Comments

In sequence A048954, a determinant of a circulant matrix, a(n) = 0 when 6 divides n. The determinant of a matrix can be interpreted as the signed volume of a simplex whose vertices are given by the rows of the matrix. For n a multiple of 6, the points form a lower dimensional simplex that has zero volume in n-space. However, the volume in n-2 space is positive and is given by the product of the nonzero eigenvalues.

Examples

			a(6) = -49392 because -1, -28, -28 and 63 are the four nonzero eigenvalues of the matrix {{1,6,15,20,15,6}, {6,1,6,15,20,15}, {15,6,1,6,15,20}, {20,15,6,1,6,15}, {15,20,15,6,1,6}, {6,15,20,15,6,1}}.
		

References

Crossrefs

Cf. A048954, A086459 (circulant of powers of 2).

Programs

  • Mathematica
    Table[x=Binomial[n, Range[0, n-1]]; m=Table[RotateRight[x, i-1], {i, n}]; e=Eigenvalues[m]; prod=1; Do[If[e[[i]]!=0, prod=prod*e[[i]]], {i, n}]; FullSimplify[prod], {n, 15}]