cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A086221 Bisection of A086652.

Original entry on oeis.org

13, 58, 244, 1000, 4048, 16288, 65344, 261760, 1047808, 4192768, 16774144, 67102720, 268423168, 1073717248, 4294918144, 17179770880, 68719280128, 274877513728, 1099510841344, 4398044938240, 17592182898688, 70368737886208
Offset: 1

Views

Author

Marco Matosic, Jul 27 2003

Keywords

Comments

(a(n)-2^(n-1))/2 = A006516(n+1).

Crossrefs

Programs

  • Mathematica
    Table[2^(2n+2)-3*2^(n-1),{n,30}] (* or *) nxt[{n_,a_}]:={n+1,4a+3*2^n}; NestList[nxt,{1,13},30][[All,2]] (* Harvey P. Dale, Nov 15 2021 *)

Formula

a(n) = 2^(2n+2)-3*2^(n-1).
a(n+1) = 4*a(n)+3*2^n.

Extensions

Edited and extended by David Wasserman, Feb 17 2005

A384186 Number of permutations of 1, 2,..., n with exactly one rising or falling successon, namely (n-1)n or n(n-1).

Original entry on oeis.org

0, 2, 2, 2, 6, 34, 214, 1506, 11990, 107234, 1065846, 11659426, 139217494, 1801784610, 25124797046, 375531165794, 5989287277014, 101524201538146, 1822662037112950, 34548339122512674, 689469487015534166, 14450128299126915746
Offset: 1

Views

Author

Wolfdieter Lang, May 21 2025

Keywords

Comments

For the number of permutations of length n with exactly one rising or falling successon see A086852. For the number of such permutations without either (n-1)n or n(n-1) see A383857, for n >= 1.

Examples

			a(2) = 2*1 from 12 and the reverted 21.
a(3) = 2*1 from 132 and 231.
a(4) = 2*1 from 1342 and 2431.
a(5) = 2*3 from 24513, 24531, 31452 and 31542, 13542, 25413.
		

Crossrefs

Formula

a(n) = A086652(n) - A383857(n), for n >= 1.
a(n) = a(n-2) + 2*(n-2)*A002464(n-2) + 2*A383857(n-2), for n >= 3, with a(1) = 0 and a(2) = 2. One could also use this recurrence for n >= 2, using a(0) = -2 and a(1) = 0.
a(n) = a(n-2) + 2*(b(n-1) + b(n-2)), with b = A002464, for n >= 3, with a(1) = 0 and a(2) = 2.
Showing 1-2 of 2 results.